We prove multiplication and embedding theorems for classes of kernels of integral operators in subsets of metric spaces with a measure. Then we prove a tangential differentiation theorem with respect to a semi-tangent vector for integral operators that are defined on an upper-Ahlfors regular subset of the Euclidean space and a continuity theorem for the corresponding integral operator in H\"{o}lder spaces in the specific case of a differentiable manifold.
CLASSES OF KERNELS AND CONTINUITY PROPERTIES OF THE TANGENTIAL GRADIENT OF AN INTEGRAL OPERATOR IN HÖLDER SPACES ON A MANIFOLD
Lanza de Cristoforis, M.
Writing – Original Draft Preparation
2023
Abstract
We prove multiplication and embedding theorems for classes of kernels of integral operators in subsets of metric spaces with a measure. Then we prove a tangential differentiation theorem with respect to a semi-tangent vector for integral operators that are defined on an upper-Ahlfors regular subset of the Euclidean space and a continuity theorem for the corresponding integral operator in H\"{o}lder spaces in the specific case of a differentiable manifold.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cotag_EMJ_Revision_24giu23.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Accesso libero
Dimensione
374.74 kB
Formato
Adobe PDF
|
374.74 kB | Adobe PDF | Visualizza/Apri |
emj477.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
477.33 kB
Formato
Adobe PDF
|
477.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.