Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet L-series attached to odd characters only. The numerical work in this paper extends and improves on our earlier preprint https://arxiv.org/abs/1908.01152 and demonstrates our theoretical results.

The Kummer ratio of the relative class number for prime cyclotomic fields

Alessandro Languasco;
2024

Abstract

Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet L-series attached to odd characters only. The numerical work in this paper extends and improves on our earlier preprint https://arxiv.org/abs/1908.01152 and demonstrates our theoretical results.
File in questo prodotto:
File Dimensione Formato  
[58].pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3502680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact