This paper presents a hydrodynamic investigation carried out on the “Wave Attenuator” device, which is a new type of floating breakwater anchored with piles and equipped with a linear Power Take Off (PTO) mechanism, which is typical for wave energy converters. The device is tested in the wave flume, under regular waves, in slightly non-linear conditions. The PTO mechanism, that restrains one of the two degrees of freedom, is simulated through an actuator and a programmable logic controller with preassigned strategy. The paper presents the system identification procedure followed in the laboratory, supported by a numerical investigation essential to set up a credible control strategy aiming at maximizing the wave energy harvesting. The maximum power conversion efficiency under the optimal PTO control strategy is found: it is of order 50–70% when the incident wave frequency is lower than the resonance one, and only of order 20% for higher frequencies. This type of experimental investigation is essential to evaluate the actual efficiency limitations imposed by device geometry.

Experimental Investigation of a Hybrid Device Combining a Wave Energy Converter and a Floating Breakwater in a Wave Flume Equipped with a Controllable Actuator

Martinelli, Luca;Volpato, Matteo;Ruol, Piero;Favaretto, Chiara;Andriollo, Mauro
2024

Abstract

This paper presents a hydrodynamic investigation carried out on the “Wave Attenuator” device, which is a new type of floating breakwater anchored with piles and equipped with a linear Power Take Off (PTO) mechanism, which is typical for wave energy converters. The device is tested in the wave flume, under regular waves, in slightly non-linear conditions. The PTO mechanism, that restrains one of the two degrees of freedom, is simulated through an actuator and a programmable logic controller with preassigned strategy. The paper presents the system identification procedure followed in the laboratory, supported by a numerical investigation essential to set up a credible control strategy aiming at maximizing the wave energy harvesting. The maximum power conversion efficiency under the optimal PTO control strategy is found: it is of order 50–70% when the incident wave frequency is lower than the resonance one, and only of order 20% for higher frequencies. This type of experimental investigation is essential to evaluate the actual efficiency limitations imposed by device geometry.
2024
File in questo prodotto:
File Dimensione Formato  
energies-17-00040_Optimized.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3502534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact