High-speed vehicles experience a highly challenging environment in which the freestream Mach number and surface temperature greatly influence aerodynamic drag and heat transfer. The interplay of these two parameters strongly affects the near-wall dynamics of high-speed turbulent boundary layers (TBLs) in a non-trivial way, breaking similarity arguments on velocity and temperature fields, typically derived for adiabatic cases. We present direct numerical simulations of flat-plate zero-pressure-gradient TBLs spanning three freestream Mach numbers [2,4,6] [ 2 , 4 , 6 ] and four wall temperature conditions (from adiabatic to very cold walls), emphasising the choice of the wall-cooling parameter to recover a similar flow organisation at different Mach numbers. We link qualitative observations on flow patterns to first- and second-order statistics to explain the decoupling of temperature–velocity fluctuations that occurs at reduced wall temperatures and high Mach numbers. For these cases, we discuss the formation of a secondary peak of thermal production in the viscous sublayer, which is in contrast with the monotonic behaviour of adiabatic profiles. We propose different physical mechanisms induced by wall-cooling and compressibility that result in apparently similar flow features, such as a higher peak in the streamwise velocity turbulence intensity, and distinct features, such as the separation of turbulent scales.

Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers

Cogo, Michele
;
Picano, Francesco
2023

Abstract

High-speed vehicles experience a highly challenging environment in which the freestream Mach number and surface temperature greatly influence aerodynamic drag and heat transfer. The interplay of these two parameters strongly affects the near-wall dynamics of high-speed turbulent boundary layers (TBLs) in a non-trivial way, breaking similarity arguments on velocity and temperature fields, typically derived for adiabatic cases. We present direct numerical simulations of flat-plate zero-pressure-gradient TBLs spanning three freestream Mach numbers [2,4,6] [ 2 , 4 , 6 ] and four wall temperature conditions (from adiabatic to very cold walls), emphasising the choice of the wall-cooling parameter to recover a similar flow organisation at different Mach numbers. We link qualitative observations on flow patterns to first- and second-order statistics to explain the decoupling of temperature–velocity fluctuations that occurs at reduced wall temperatures and high Mach numbers. For these cases, we discuss the formation of a secondary peak of thermal production in the viscous sublayer, which is in contrast with the monotonic behaviour of adiabatic profiles. We propose different physical mechanisms induced by wall-cooling and compressibility that result in apparently similar flow features, such as a higher peak in the streamwise velocity turbulence intensity, and distinct features, such as the separation of turbulent scales.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3498923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact