The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.

Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing

Chiariotti F.;
2021

Abstract

The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.
File in questo prodotto:
File Dimensione Formato  
CommLett_graph_sampling.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3498623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact