Controlling the edge morphology and terminations of graphene nanoribbons (GNR) allows tailoring their electronic properties and boosts their application potential. One way of making such structures is encapsulating them inside single-walled carbon nanotubes. Despite the versatility of Raman spectroscopy to resolve strong spectral signals of these systems, discerning the response of long nanoribbons from that of any residual precursor remaining outside after synthesis has been so far elusive. Here, the terrylene dye is used as precursor to make long and ultra-narrow armchair-edged GNR inside nanotubes. The alignment and characteristic length of terrylene encapsulated parallel to the tube's axis facilitates the ribbon formation via polymerization, with high stability up to 750 degrees C when the hybrid system is kept in high vacuum. A high temperature annealing is used to remove the terrylene external molecules and a subtraction model based on the determination of a scaling factor related to the G-band response of the system is developed. This not only represents a critical step forward toward the analysis of the nanoribbon-nanotube system, but it is a study that enables unraveling the Raman signatures of the individual CH-modes (the signature of edge passivation) for GNR for the first time with unprecedented detail.

Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation

Milotti, Valeria;
2022

Abstract

Controlling the edge morphology and terminations of graphene nanoribbons (GNR) allows tailoring their electronic properties and boosts their application potential. One way of making such structures is encapsulating them inside single-walled carbon nanotubes. Despite the versatility of Raman spectroscopy to resolve strong spectral signals of these systems, discerning the response of long nanoribbons from that of any residual precursor remaining outside after synthesis has been so far elusive. Here, the terrylene dye is used as precursor to make long and ultra-narrow armchair-edged GNR inside nanotubes. The alignment and characteristic length of terrylene encapsulated parallel to the tube's axis facilitates the ribbon formation via polymerization, with high stability up to 750 degrees C when the hybrid system is kept in high vacuum. A high temperature annealing is used to remove the terrylene external molecules and a subtraction model based on the determination of a scaling factor related to the G-band response of the system is developed. This not only represents a critical step forward toward the analysis of the nanoribbon-nanotube system, but it is a study that enables unraveling the Raman signatures of the individual CH-modes (the signature of edge passivation) for GNR for the first time with unprecedented detail.
2022
File in questo prodotto:
File Dimensione Formato  
2022 Milotti - Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature.pdf

accesso aperto

Descrizione: 2022 Milotti - Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature.pdf
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3498100
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact