Reproductive, phenotypic and life-history traits in many animal and plant taxa show geographic variation, indicating spatial variation in selection regimes. Maternal deposition to avian eggs, such as hormones, antibodies and antioxidants, critically affect development of the offspring, with long-lasting effects on the phenotype and fitness. Little is however known about large-scale geographical patterns of variation in maternal deposition to eggs. We studied geographical variation in egg components of a passerine bird, the pied flycatcher (Ficedula hypoleuca), by collecting samples from 16 populations and measuring egg and yolk mass, albumen lysozyme activity, yolk immunoglobulins, yolk androgens and yolk total carotenoids. We found significant variation among populations in most egg components, but ca. 90% of the variation was among individuals within populations. Population however explained 40% of the variation in carotenoid levels. In contrast to our hypothesis, we found geographical trends only in carotenoids, but not in any of the other egg components. Our results thus suggest high within-population variation and leave little scope for local adaptation and genetic differentiation in deposition of different egg components. The role of these maternally-derived resources in evolutionary change should be further investigated. © 2011 Ruuskanen et al.
Geographical variation in egg mass and egg content in a passerine bird
Morosinotto C.;
2011
Abstract
Reproductive, phenotypic and life-history traits in many animal and plant taxa show geographic variation, indicating spatial variation in selection regimes. Maternal deposition to avian eggs, such as hormones, antibodies and antioxidants, critically affect development of the offspring, with long-lasting effects on the phenotype and fitness. Little is however known about large-scale geographical patterns of variation in maternal deposition to eggs. We studied geographical variation in egg components of a passerine bird, the pied flycatcher (Ficedula hypoleuca), by collecting samples from 16 populations and measuring egg and yolk mass, albumen lysozyme activity, yolk immunoglobulins, yolk androgens and yolk total carotenoids. We found significant variation among populations in most egg components, but ca. 90% of the variation was among individuals within populations. Population however explained 40% of the variation in carotenoid levels. In contrast to our hypothesis, we found geographical trends only in carotenoids, but not in any of the other egg components. Our results thus suggest high within-population variation and leave little scope for local adaptation and genetic differentiation in deposition of different egg components. The role of these maternally-derived resources in evolutionary change should be further investigated. © 2011 Ruuskanen et al.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.