Blinking analysis contributes to the understanding of physiological mechanisms in healthy subjects as well as the pathophysiological mechanisms of neurological diseases. To date, blinking is assessed by various neurophysiological techniques, including electromyographic (EMG) recordings and optoelectronic motion analysis. We recorded eye-blink kinematics with a new portable device, the EyeStat (Generation 3, blinktbi, Inc., Charleston, SC, USA), and compared the measurements with data obtained using traditional laboratory-based techniques. Sixteen healthy adults underwent voluntary, spontaneous, and reflex blinking recordings using the EyeStat device and the SMART motion analysis system (BTS, Milan, Italy). During the blinking recordings, the EMG activity was recorded from the orbicularis oculi muscles using surface electrodes. The blinking data were analyzed through dedicated software and evaluated with repeated-measure analyses of variance. The Pearson’s product-moment correlation coefficient served to assess possible associations between the EyeStat device, the SMART motion system, and the EMG data. We found that the EMG data collected during the EyeStat and SMART system recordings did not differ. The blinking data recorded with the EyeStat showed a linear relationship with the results obtained with the SMART system (r ranging from 0.85 to 0.57; p ranging from <0.001 to 0.02). These results demonstrate a high accuracy and reliability of a blinking analysis through this portable device, compared with standard techniques. EyeStat may make it easier to record blinking in research activities and in daily clinical practice, thus allowing large-scale studies in healthy subjects and patients with neurological diseases in an outpatient clinic setting.

Validating a Portable Device for Blinking Analyses through Laboratory Neurophysiological Techniques

Guerra A.;
2022

Abstract

Blinking analysis contributes to the understanding of physiological mechanisms in healthy subjects as well as the pathophysiological mechanisms of neurological diseases. To date, blinking is assessed by various neurophysiological techniques, including electromyographic (EMG) recordings and optoelectronic motion analysis. We recorded eye-blink kinematics with a new portable device, the EyeStat (Generation 3, blinktbi, Inc., Charleston, SC, USA), and compared the measurements with data obtained using traditional laboratory-based techniques. Sixteen healthy adults underwent voluntary, spontaneous, and reflex blinking recordings using the EyeStat device and the SMART motion analysis system (BTS, Milan, Italy). During the blinking recordings, the EMG activity was recorded from the orbicularis oculi muscles using surface electrodes. The blinking data were analyzed through dedicated software and evaluated with repeated-measure analyses of variance. The Pearson’s product-moment correlation coefficient served to assess possible associations between the EyeStat device, the SMART motion system, and the EMG data. We found that the EMG data collected during the EyeStat and SMART system recordings did not differ. The blinking data recorded with the EyeStat showed a linear relationship with the results obtained with the SMART system (r ranging from 0.85 to 0.57; p ranging from <0.001 to 0.02). These results demonstrate a high accuracy and reliability of a blinking analysis through this portable device, compared with standard techniques. EyeStat may make it easier to record blinking in research activities and in daily clinical practice, thus allowing large-scale studies in healthy subjects and patients with neurological diseases in an outpatient clinic setting.
2022
File in questo prodotto:
File Dimensione Formato  
51.Paparella et al., 2022. Brain Sci.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 866.67 kB
Formato Adobe PDF
866.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3497617
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact