We investigate the relation between energy minimizing maps valued into spheres having topological singularities at given points and optimal networks connecting them (e.g., Steiner trees, Gilbert-Steiner irrigation networks). We show the equivalence of the corresponding variational problems, interpreting in particular the branched optimal transport problem as a homological Plateau problem for rectifiable currents with values in a suitable normed group. This generalizes the pioneering work by Brezis, Coron and Lieb [10].
Energy minimizing maps with prescribed singularities and Gilbert-Steiner optimal networks
Massaccesi A.
;
2023
Abstract
We investigate the relation between energy minimizing maps valued into spheres having topological singularities at given points and optimal networks connecting them (e.g., Steiner trees, Gilbert-Steiner irrigation networks). We show the equivalence of the corresponding variational problems, interpreting in particular the branched optimal transport problem as a homological Plateau problem for rectifiable currents with values in a suitable normed group. This generalizes the pioneering work by Brezis, Coron and Lieb [10].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BLMO.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
383.93 kB
Formato
Adobe PDF
|
383.93 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.