Sum-based global tests are highly popular in multiple hypothesis testing. In this paper, we propose a general closed testing procedure for sum tests, which provides lower confidence bounds for the proportion of true discoveries (TDPs), simultaneously over all subsets of hypotheses. These simultaneous inferences come for free, i.e., without any adjustment of the alpha-level, whenever a global test is used. Our method allows for an exploratory approach, as simultaneity ensures control of the TDP even when the subset of interest is selected post hoc. It adapts to the unknown joint distribution of the data through permutation testing. Any sum test may be employed, depending on the desired power properties. We present an iterative shortcut for the closed testing procedure, based on the branch and bound algorithm, which converges to the full closed testing results, often after few iterations; even if it is stopped early, it controls the TDP. We compare the properties of different choices for the sum test through simulations, then we illustrate the feasibility of the method for high-dimensional data on brain imaging and genomics data.

Permutation-based true discovery guarantee by sum tests

Anna Vesely;Livio Finos;
2023

Abstract

Sum-based global tests are highly popular in multiple hypothesis testing. In this paper, we propose a general closed testing procedure for sum tests, which provides lower confidence bounds for the proportion of true discoveries (TDPs), simultaneously over all subsets of hypotheses. These simultaneous inferences come for free, i.e., without any adjustment of the alpha-level, whenever a global test is used. Our method allows for an exploratory approach, as simultaneity ensures control of the TDP even when the subset of interest is selected post hoc. It adapts to the unknown joint distribution of the data through permutation testing. Any sum test may be employed, depending on the desired power properties. We present an iterative shortcut for the closed testing procedure, based on the branch and bound algorithm, which converges to the full closed testing results, often after few iterations; even if it is stopped early, it controls the TDP. We compare the properties of different choices for the sum test through simulations, then we illustrate the feasibility of the method for high-dimensional data on brain imaging and genomics data.
File in questo prodotto:
File Dimensione Formato  
2102.11759.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 786.03 kB
Formato Adobe PDF
786.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3494540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact