As it propagates in a real single-mode fiber, light accumulates a phase delay and undergoes variations of its polarization state. These two phenomena are partly related to each other, owing to both well known geometric effects, i.e. the Pancharatnam's phase, and less known dynamic ones. This paper aims at reviewing these concepts, highlighting the polarization-depended phase of light that propagates in a single-mode fiber. We present a mathematical treatment using the familiar language of Jones and Stokes vectors and report experiments supporting the theory. The presented analysis has a general validity, and it can describe phase variation with respect to several parameters, such as distance, frequency and time. Its extension to multimode and multi-core fibers is also discussed. The results can be used for a better modelling and understanding of coherent transmission systems and interferometric fiber optic sensors.
Polarization-Dependent Phase of Light Propagating in Optical Fibers
Palmieri L.
;Cappelletti M.;Santagiustina M.;Galtarossa A.
2023
Abstract
As it propagates in a real single-mode fiber, light accumulates a phase delay and undergoes variations of its polarization state. These two phenomena are partly related to each other, owing to both well known geometric effects, i.e. the Pancharatnam's phase, and less known dynamic ones. This paper aims at reviewing these concepts, highlighting the polarization-depended phase of light that propagates in a single-mode fiber. We present a mathematical treatment using the familiar language of Jones and Stokes vectors and report experiments supporting the theory. The presented analysis has a general validity, and it can describe phase variation with respect to several parameters, such as distance, frequency and time. Its extension to multimode and multi-core fibers is also discussed. The results can be used for a better modelling and understanding of coherent transmission systems and interferometric fiber optic sensors.File | Dimensione | Formato | |
---|---|---|---|
Polarization-Dependent_Phase_of_Light_Propagating_in_Optical_Fibers.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.