Rock stiffness and the evolution of rock friction with slip velocity and slip displacement control earthquake mechanics and the seismic cycle. This physical interpretation is also based on rock friction experiments where low (~1 m/s, sub-seismic) to high (~1 m/s, seismic) slip velocities were imposed on simulated faults. However, the investigation of rock friction under hydrothermal conditions at slip velocities (0.01-1 m/s) and displacements (> 0.1 m) typical of earthquakes has been partly hampered by technical challenges. In this thesis, I aim at better understanding the frictional behavior of experimental faults in the presence of hot and pressurized fluids during the seismic cycle by means of rotary shear experiments and micro-analytical investigations. First, I investigated the effect of the physical state of water on frictional strength. Experimental results show that the presence of pressurized water in liquid and supercritical states, compared to in vapor state (and dry conditions), weakens the fault strength of gabbro of 50-60% at sub-seismic slip velocities (e.g., 10 m/s). Then, I performed slide-hold-slide experiments under hydrothermal conditions to investigate frictional healing during the seismic cycle. The results show that the log-linear relation between frictional healing and hold time is relaxed at high temperatures and, especially, in the presence of fluids. This behavior is attributed to the contrasting effects of contact area increase vs. contact strength decrease of the asperities during the holds. Finally, I studied the slip dependence of frictional stability in large displacement experiments performed on gouges at conditions close to brittle-ductile transition. The results show that the transition from velocity-weakening (potentially unstable) to velocity-strengthening (stable) behavior is promoted by slip displacement and is associated with the transition from localized to distributed deformation in the gouge layer. The results presented in this thesis challenge in some cases our current knowledge of rock friction under hydrothermal conditions and may provide new insights into the mechanical behavior of faults during the seismic cycle.
La rigidità della roccia e l'evoluzione dell'attrito con la velocità e la distanza di scivolamento controllano la meccanica dei terremoti e il ciclo sismico. Questa interpretazione fisica si basa anche su esperimenti di attrito nelle rocce effettuati a basse (~1 mm/s, sub-sismiche) e alte (~1 m/s, cosismiche) velocità di scivolamento. Tuttavia, lo studio dell'attrito delle rocce in condizioni idrotermali e a velocità di scivolamento (0,01-1 m/s) e per rigetti (> 0,1 m) tipici dei terremoti è stata in parte ostacolata da problemi tecnici. In questa tesi, mi propongo di comprendere meglio il comportamento dell’attrito di faglie sperimentali in presenza di fluidi caldi e pressurizzati durante il ciclo sismico, mediante esperimenti condotti con macchine tipo rotary e indagini microanalitiche. Nella prima parte della tesi, ho studiato l'effetto dello stato fisico dell'acqua sul coefficiente di attrito. I risultati sperimentali mostrano che la presenza di acqua pressurizzata allo stato liquido e supercritico, rispetto a quella allo stato di vapore (e in condizioni asciutte), abbassa il coefficiente d’attrito di una faglia di gabbro del 50-60% a velocità di scorrimento sub-sismiche (e.g., 10 mm/s). Ho quindi effettuato esperimenti in condizioni idrotermali per studiare l’attrito delle faglie nella fase intersismica del ciclo sismico. I risultati mostrano che la relazione log-lineare tra l’incremento di attrito e tempo di contatto si riduce ad alte temperature e, soprattutto, in presenza di fluidi. Questo comportamento è attribuito agli effetti contrastanti dell'aumento dell'area di contatto rispetto alla diminuzione della forza di contatto delle asperità durante il tempo di contatto (o intersismico). Ho infine studiato la dipendenza della stabilità dell'attrito con il rigetto effettuando esperimenti su polveri di roccia deformate a temperature e pressionei prossime a quelle della transizione fragile-duttile. I risultati sperimentali mostrano che la transizione da comportamento velocity-weakening e potenzialmente instabile a velocity-strengthening e stabile avviene all’aumentare del rigetto ed è associata alla transizione da una deformazione localizzata a distribuita nello strato di polvere. I risultati presentati in questa tesi sfidano in alcuni casi le nostre attuali conoscenze sull'attrito delle rocce in condizioni idrotermali e forniscono nuove possibili interpretazioni sul comportamento meccanico delle faglie durante il ciclo sismico.
INVESTIGATION OF SEISMIC SLIP IN EXPERIMENTAL FAULTS UNDER HYDROTHERMAL CONDITIONS / Feng, Wei. - (2023 Jun 28).
INVESTIGATION OF SEISMIC SLIP IN EXPERIMENTAL FAULTS UNDER HYDROTHERMAL CONDITIONS
FENG, WEI
2023
Abstract
Rock stiffness and the evolution of rock friction with slip velocity and slip displacement control earthquake mechanics and the seismic cycle. This physical interpretation is also based on rock friction experiments where low (~1 m/s, sub-seismic) to high (~1 m/s, seismic) slip velocities were imposed on simulated faults. However, the investigation of rock friction under hydrothermal conditions at slip velocities (0.01-1 m/s) and displacements (> 0.1 m) typical of earthquakes has been partly hampered by technical challenges. In this thesis, I aim at better understanding the frictional behavior of experimental faults in the presence of hot and pressurized fluids during the seismic cycle by means of rotary shear experiments and micro-analytical investigations. First, I investigated the effect of the physical state of water on frictional strength. Experimental results show that the presence of pressurized water in liquid and supercritical states, compared to in vapor state (and dry conditions), weakens the fault strength of gabbro of 50-60% at sub-seismic slip velocities (e.g., 10 m/s). Then, I performed slide-hold-slide experiments under hydrothermal conditions to investigate frictional healing during the seismic cycle. The results show that the log-linear relation between frictional healing and hold time is relaxed at high temperatures and, especially, in the presence of fluids. This behavior is attributed to the contrasting effects of contact area increase vs. contact strength decrease of the asperities during the holds. Finally, I studied the slip dependence of frictional stability in large displacement experiments performed on gouges at conditions close to brittle-ductile transition. The results show that the transition from velocity-weakening (potentially unstable) to velocity-strengthening (stable) behavior is promoted by slip displacement and is associated with the transition from localized to distributed deformation in the gouge layer. The results presented in this thesis challenge in some cases our current knowledge of rock friction under hydrothermal conditions and may provide new insights into the mechanical behavior of faults during the seismic cycle.File | Dimensione | Formato | |
---|---|---|---|
Feng_Phd_thesis_final.pdf
accesso aperto
Descrizione: Thesis_Wei_Feng
Tipologia:
Tesi di dottorato
Dimensione
12.73 MB
Formato
Adobe PDF
|
12.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.