Direct printing of spin-on functional films is probably the most efficient method to develop low-cost novel photonic nanodevices, such as diffraction gratings, planar waveguides, nano- lasers, and antireflective coatings. For these applications high refractive index transparent materials are demanded; however, this class of materials generally requires inorganic oxides, well known for their hardness, typical of ceramic materials, and so incompatible with a soft character of printable resins. Herein, inorganic high refractive index TiO2 micro- and nano- structures, with unusual depth up to 600 nm and aspect ratio larger than 5, are obtained by combining thermal nanoimprint lithography (NIL) with UV curing. To achieve printed patterns, a hybrid organic-inorganic spin-on film is deposited at low-temperature by sol-gel processing. Two distinct bottomup synthetic approaches are used, called in situ and ex situ, using titanium isopropoxide (90%) or TiO2 anatase nanoparticles (70%), respectively, and adding a silica sol modified by organic moieties. The two syntheses were optimized to obtain, after patterning by thermal imprint, amorphous or crystalline titania crack-free micro- and nano- patterns for in situ and ex situ, respectively. The further UV irradiation converts imprinted films to totally inorganic patterns, through the titania photocatalytic effect, allowing refractive indexes up to 1.82 at 632 nm to be achieved. This novel strategy of combining thermal imprint with UV exposure allows inorganic deep patterns to be fabricated without a calcination step, which is generally needed for inorganic resists processing. Eventually, a thermal treatment only at 300 degrees C can be applied to achieve a final refractive index of 2 at 632 nm.[GRAPHICS].

One-step fabrication of high refractive index inorganic nanostructures

Gandin, A;Brusatin, G
2023

Abstract

Direct printing of spin-on functional films is probably the most efficient method to develop low-cost novel photonic nanodevices, such as diffraction gratings, planar waveguides, nano- lasers, and antireflective coatings. For these applications high refractive index transparent materials are demanded; however, this class of materials generally requires inorganic oxides, well known for their hardness, typical of ceramic materials, and so incompatible with a soft character of printable resins. Herein, inorganic high refractive index TiO2 micro- and nano- structures, with unusual depth up to 600 nm and aspect ratio larger than 5, are obtained by combining thermal nanoimprint lithography (NIL) with UV curing. To achieve printed patterns, a hybrid organic-inorganic spin-on film is deposited at low-temperature by sol-gel processing. Two distinct bottomup synthetic approaches are used, called in situ and ex situ, using titanium isopropoxide (90%) or TiO2 anatase nanoparticles (70%), respectively, and adding a silica sol modified by organic moieties. The two syntheses were optimized to obtain, after patterning by thermal imprint, amorphous or crystalline titania crack-free micro- and nano- patterns for in situ and ex situ, respectively. The further UV irradiation converts imprinted films to totally inorganic patterns, through the titania photocatalytic effect, allowing refractive indexes up to 1.82 at 632 nm to be achieved. This novel strategy of combining thermal imprint with UV exposure allows inorganic deep patterns to be fabricated without a calcination step, which is generally needed for inorganic resists processing. Eventually, a thermal treatment only at 300 degrees C can be applied to achieve a final refractive index of 2 at 632 nm.[GRAPHICS].
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1062313006.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3491261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact