The increasingly stringent requirements in terms of flexibility and efficiency for hydraulic turbines pose new challenges for designers. Although computational fluid dynamics has offered new opportunities to significantly improve the performance in the preliminary design phase, the design of a hydraulic turbine still represents a challenging task requiring considerable engineering input and know-how. In such a scenario, the inverse three-dimensional design strategy has recently demonstrated its effectiveness in improving the machine performance, and interesting applications have been proposed for Francis turbines and reversible pump turbines. This paper presents and discusses the most interesting design solutions so far documented. The influence of blade staking and load distribution on the hydrodynamic performance is discussed. Finally, optimized blade load distributions are reported to provide useful design guidelines for the development of the new generation of hydraulic turbines.
Application of the 3D Inverse Design Method in Reversible Pump Turbines and Francis Turbines
Zanetti, Giacomo
;Siviero, Monica;Cavazzini, Giovanna;
2023
Abstract
The increasingly stringent requirements in terms of flexibility and efficiency for hydraulic turbines pose new challenges for designers. Although computational fluid dynamics has offered new opportunities to significantly improve the performance in the preliminary design phase, the design of a hydraulic turbine still represents a challenging task requiring considerable engineering input and know-how. In such a scenario, the inverse three-dimensional design strategy has recently demonstrated its effectiveness in improving the machine performance, and interesting applications have been proposed for Francis turbines and reversible pump turbines. This paper presents and discusses the most interesting design solutions so far documented. The influence of blade staking and load distribution on the hydrodynamic performance is discussed. Finally, optimized blade load distributions are reported to provide useful design guidelines for the development of the new generation of hydraulic turbines.File | Dimensione | Formato | |
---|---|---|---|
water-15-02271.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.