In this work we have explored the capabilities of an electrospun mat, realized in crosslinked poly(epsilon-caprolactone), to be employed as a scaffold for specific biological applications. Its shape memory behavior was here exploited to easily control fiber orientation and to guide cellular alignment. Randomly oriented mats were transformed in a stable shape with various degrees of fiber alignment by simply varying the maximum strain applied throughout proper thermo-mechanical cycles. The effect of fiber alignment was investigated both on mechanical properties and on cell culture, through biological characterization done by using Neural Stem Cells derived from human iPSCs (induced Pluripotent Stem Cells). Further, thanks to the thermal stability of the microfibrous structure, it was possible to transfer, through inkjet printing on the electrospun, a biocompatible sensing element, which successfully allowed to monitor cell adhesion (L6 Myoblast) in an innovative way under dynamic conditions.
Shape Memory Electrospun Nonwovens Based on Crosslinked Poly(epsilon-Caprolactone) for Multifunctional Biological Applications
Tonello, S;
2018
Abstract
In this work we have explored the capabilities of an electrospun mat, realized in crosslinked poly(epsilon-caprolactone), to be employed as a scaffold for specific biological applications. Its shape memory behavior was here exploited to easily control fiber orientation and to guide cellular alignment. Randomly oriented mats were transformed in a stable shape with various degrees of fiber alignment by simply varying the maximum strain applied throughout proper thermo-mechanical cycles. The effect of fiber alignment was investigated both on mechanical properties and on cell culture, through biological characterization done by using Neural Stem Cells derived from human iPSCs (induced Pluripotent Stem Cells). Further, thanks to the thermal stability of the microfibrous structure, it was possible to transfer, through inkjet printing on the electrospun, a biocompatible sensing element, which successfully allowed to monitor cell adhesion (L6 Myoblast) in an innovative way under dynamic conditions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.