Clusters of coupled nuclear spins may form long-lived nuclear spin states, which interact weakly with the environment, compared to ordinary nuclear magnetization. All experimental demonstrations of longlived states have so far involved spin systems which are close to the condition of magnetic equivalence, in which the network of spin-spin couplings is conserved under all pair exchanges of symmetry-related nuclei. We show that the four-spin system of trans-[2,3-13C2]-but-2-enedioate exhibits a long-lived nuclear spin state, even though this spin system is very far from magnetic equivalence. The 4-spin longlived state is accessed by slightly asymmetric chemical substitutions of the centrosymmetric molecular core. The long-lived state is a consequence of the locally centrosymmetric molecular geometry for the trans isomer, and is absent for the cis isomer. A general group theoretical description of long-lived states is presented. It is shown that the symmetries of coherent and incoherent interactions are both important for the existence of long-lived states.
Long-lived nuclear spin states far from magnetic equivalence
Stevanato G.;
2015
Abstract
Clusters of coupled nuclear spins may form long-lived nuclear spin states, which interact weakly with the environment, compared to ordinary nuclear magnetization. All experimental demonstrations of longlived states have so far involved spin systems which are close to the condition of magnetic equivalence, in which the network of spin-spin couplings is conserved under all pair exchanges of symmetry-related nuclei. We show that the four-spin system of trans-[2,3-13C2]-but-2-enedioate exhibits a long-lived nuclear spin state, even though this spin system is very far from magnetic equivalence. The 4-spin longlived state is accessed by slightly asymmetric chemical substitutions of the centrosymmetric molecular core. The long-lived state is a consequence of the locally centrosymmetric molecular geometry for the trans isomer, and is absent for the cis isomer. A general group theoretical description of long-lived states is presented. It is shown that the symmetries of coherent and incoherent interactions are both important for the existence of long-lived states.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.