Skeletal muscle accounts for almost 40% of the total body mass1. Besides its role in locomotion, it is the organ with the largest amino acid storage in the human body, and its metabolism influences whole-body homeostasis. Since skeletal muscle plasticity and its metabolism change in response to physiological and pathological conditions, it is crucial to investigate the molecular mechanisms regulating muscle mass. Here we want to dissect the identity and localization of nascent skeletal muscle proteome in vivo. For this purpose, we used transgenic mice expressing a mutant methionyl-tRNA synthetase together with a green fluorescent protein. Due to its expanded amino acid binding site, the mutated tRNA synthetase can incorporate a synthetic analogue of methionine, azidonorleucine (ANL), into a nascent polypeptide chain. The polypeptide chain containing ANL can be tagged using click chemistry and then identified through Western Blotting (BONCAT) or visualized on cryosections (FUNCAT). This approach's novelty consists of crossing MetRS mice with transgenic mice expressing Cre recombinase under the MLC1f skeletal muscle-specific promoter. In this way, we can mark proteins synthesized only by skeletal muscle fibers. We successfully generated the Cre-MetRS mouse line expressing the mutated methionyl tRNA and established the amount of labelled proteins we can visualize with FUNCAT or identify with BONCAT. Different pulses of intraperitoneal injections suggested that both time and ANL dosage influence labelled proteins levels. To increase the labelling, we changed the administration route supplying ANL in drinking water. Force productions measurements and histological analysis showed that incorporating ANL into newly synthesized peptides does not influence the proteins’ physiological role. The proteins are correctly folded and reach their intracellular target. They can be localized coupling click reaction to a proximity ligation assay for proteins of interest. We chose to localize actin and dystrophin because of their abundance in muscle fibers, and as expected, PLA showed the membrane localization of dystrophin compared to actin. Furthermore, we monitored protein synthesis during skeletal muscle hypertrophy and atrophy. We used AKT-MetRS animals and observed that the higher protein synthesis mTORC1-mediated increases the amount of myofibrillar protein labelling. On the other hand, overload increases protein synthesis via Hippo pathway. How atrophic stimuli influence skeletal muscle labelling was also checked both during starvation and chemical denervation. In both models, we observed a selective reduction in fiber labelling. Combining myosins stainings with FUNCAT, we observed that nutrient deprivation leads to a fiber-type dependent reduction in labelled proteins. Surprisingly, this striking correlation was no longer maintained in chemical denervated mouse models of atrophy. This time, the amount of labelled protein seems to depend on whether the muscle is in a denervated or reinnervated status. The previous results proved that the in vivo labelling of MetRS transgenic mice allows for a sensitive visualization and localization of newly synthesized skeletal muscle proteins. However, skeletal muscle is a highly metabolic, endocrine tissue, that influences all the other structures around. For that reason, we wanted to test whether labelled proteins that originated within the muscle are being transferred into sciatic nerves, thus demonstrating inter tissues communication. We collected sciatic nerves of chemically denervated animals, and performed western blot analysis on these samples. The presence of ANL-incorporating peptides, revealed by western blotting analysis, indicated a potential role of skeletal muscle proteins in the homeostasis of sciatic nerve tissue.
Il muscolo scheletrico ha una massa equivalente al 40 % della massa totale corporea e rappresenta l’organo più voluminoso. Considerando che il muscolo scheletrico rappresenta la più grande riserva proteica dell’organismo, le sue funzioni non si limitano solo alla locomozione ma includono anche la regolazione metabolica. La sua plasticità e metabolismo cambiano in risposta a stimoli fisiologici e patologici pertanto diventa cruciale lo studio dei meccanismi molecolari che regolano la sua massa e come tali meccanismi vengano up o down-regolati. Questa tesi riguarda quindi l’identità e la localizzazione delle proteine sintetizzate dal muscolo scheletrico sottoposto a diversi stimoli. A tal proposito, abbiamo utilizzato un modello murino transgenico che esprime il metionil-tRNA sintetasi mutante insieme al tag “”GFP”. Una singola mutazione nella sequenza genica del metionil-tRNA sintetasi nativo ingrandisce il sito di legame amminoacidico rendendo il mutante capace di incorporare un aminoacido non canonico, l’azidonorleucina invece della naturale metionina. Le catene polipeptidiche che contengono l’azidonorleucina possono essere marcate mediante una serie di reazioni chimiche classificate come “click” e successivamente identificate mediante WB (BONCAT) e visualizzate su sezioni trasversali di muscolo (FUNCAT). La novità di questo approccio consiste nell’incrociare la linea transgenica murina che esprime il mutante con animali che esprimono la Cre ricombinasi sotto il controllo di un promotore muscolo specifico. Il risultato è un animale che sintetizza le proteine contenenti l’amminoacido modificato esclusivamente nel muscolo scheletrico rendendo possibile uno studio muscolo specifico del proteoma murino. Dopo aver generato la linea Cre-MetRS, abbiamo stabilito la quantità di proteine che si possono identificare mediante FUNCAT o BONCAT. Da esperimenti basati su iniezioni intraperitoneali di ANL in animali transgenici, è emersa una proporzionalità tra la quantità e il tempo di somministrazione di ANL e il livello delle proteine marcate. Pertanto per aumentare quanto più possibile il livello di proteine marcate, abbiamo cambiato la via di somministrane da intraperitoneale ad orale. Prove di forza e esami istologici non hanno mostrato segni di tossicità suggerendo che l’incorporazione dell’ANL nelle proteine sintetizzate ex novo non influenza il ruolo fisiologico di tali proteine. Le proteine sintetizzate e correttamente ripiegate riescono a raggiungere i propri target intracellulari e possono essere localizzate accoppiando alla reazione click un saggio chiamato “proximity ligation assay” (PLA). La click-PLA, scegliendo come proteine target l’actina e la distrofina ha infatti mostrato che la peculiare localizzazione sarcoplasmatica della distrofina è diversa da quella citoplasmatica dell’actina. Considerando che la presenza di stimoli ipertrofici ed atrofici influenza il proteoma muscolare, abbiamo deciso di monitorare la sintesi proteica in alcuni modelli murini di crescita e di perdita muscolare. Abbiamo quindi marcato le proteine di un modello murino transgenico chiamato AKT-MetRS e abbiamo osservato un aumento nel contenuto di proteine miofibrillari in muscoli a contrazione lenta come il soleo. L’altro stimolo ipertrofico usato, il sovraccarico dell’EDL, ha portato a risultati differenti suggerendo un aumento nelle sintesi proteica mediata dalla proteina YAP e dalla sua localizzazione nucleare e non più da mTORC1. Nei due modelli murini di atrofia che abbiamo scelto, il digiuno e la denervazione chimica, abbiamo osservato, una riduzione selettiva nella quantità delle proteine marcate. Per confermare tale risultato abbiamo combinato FUNCAT e immunofluorescenza per le diverse isoforme della miosina e abbiamo notato una riduzione della marcatura delle proteine nelle fibre a contrazione veloce.
La regolazione della sintesi e funzionalità proteica in plasticità muscolare e malattie / Dumitras, ANA GEORGIA. - (2022 Feb 25).
La regolazione della sintesi e funzionalità proteica in plasticità muscolare e malattie.
DUMITRAS, ANA GEORGIA
2022
Abstract
Skeletal muscle accounts for almost 40% of the total body mass1. Besides its role in locomotion, it is the organ with the largest amino acid storage in the human body, and its metabolism influences whole-body homeostasis. Since skeletal muscle plasticity and its metabolism change in response to physiological and pathological conditions, it is crucial to investigate the molecular mechanisms regulating muscle mass. Here we want to dissect the identity and localization of nascent skeletal muscle proteome in vivo. For this purpose, we used transgenic mice expressing a mutant methionyl-tRNA synthetase together with a green fluorescent protein. Due to its expanded amino acid binding site, the mutated tRNA synthetase can incorporate a synthetic analogue of methionine, azidonorleucine (ANL), into a nascent polypeptide chain. The polypeptide chain containing ANL can be tagged using click chemistry and then identified through Western Blotting (BONCAT) or visualized on cryosections (FUNCAT). This approach's novelty consists of crossing MetRS mice with transgenic mice expressing Cre recombinase under the MLC1f skeletal muscle-specific promoter. In this way, we can mark proteins synthesized only by skeletal muscle fibers. We successfully generated the Cre-MetRS mouse line expressing the mutated methionyl tRNA and established the amount of labelled proteins we can visualize with FUNCAT or identify with BONCAT. Different pulses of intraperitoneal injections suggested that both time and ANL dosage influence labelled proteins levels. To increase the labelling, we changed the administration route supplying ANL in drinking water. Force productions measurements and histological analysis showed that incorporating ANL into newly synthesized peptides does not influence the proteins’ physiological role. The proteins are correctly folded and reach their intracellular target. They can be localized coupling click reaction to a proximity ligation assay for proteins of interest. We chose to localize actin and dystrophin because of their abundance in muscle fibers, and as expected, PLA showed the membrane localization of dystrophin compared to actin. Furthermore, we monitored protein synthesis during skeletal muscle hypertrophy and atrophy. We used AKT-MetRS animals and observed that the higher protein synthesis mTORC1-mediated increases the amount of myofibrillar protein labelling. On the other hand, overload increases protein synthesis via Hippo pathway. How atrophic stimuli influence skeletal muscle labelling was also checked both during starvation and chemical denervation. In both models, we observed a selective reduction in fiber labelling. Combining myosins stainings with FUNCAT, we observed that nutrient deprivation leads to a fiber-type dependent reduction in labelled proteins. Surprisingly, this striking correlation was no longer maintained in chemical denervated mouse models of atrophy. This time, the amount of labelled protein seems to depend on whether the muscle is in a denervated or reinnervated status. The previous results proved that the in vivo labelling of MetRS transgenic mice allows for a sensitive visualization and localization of newly synthesized skeletal muscle proteins. However, skeletal muscle is a highly metabolic, endocrine tissue, that influences all the other structures around. For that reason, we wanted to test whether labelled proteins that originated within the muscle are being transferred into sciatic nerves, thus demonstrating inter tissues communication. We collected sciatic nerves of chemically denervated animals, and performed western blot analysis on these samples. The presence of ANL-incorporating peptides, revealed by western blotting analysis, indicated a potential role of skeletal muscle proteins in the homeostasis of sciatic nerve tissue.File | Dimensione | Formato | |
---|---|---|---|
tesi_Ana Georgia _Dumitras .pdf
Open Access dal 28/08/2023
Descrizione: tesi_AnaGeorgia_Dumitras
Tipologia:
Tesi di dottorato
Licenza:
Altro
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.