Texturing can be used to functionalize the surface of plastic parts and, in particular, to modify the interaction with fluids. Wetting functionalization can be used for microfluidics, medical devices, scaffolds, and more. In this research, hierarchical textures were generated on steel mold inserts using femtosecond laser ablation to transfer on plastic parts surface via injection molding. Different textures were designed to study the effects of various hierarchical geometries on the wetting behavior. The textures are designed to create wetting functionalization while avoiding high aspect ratio features, which are complex to replicate and difficult to manufacture at scale. Nano-scale ripples were generated over the micro-scale texture by creating laser-induced periodic surface structures. The textured molds were then replicated by micro-injection molding using polypropylene and poly(methyl methacrylate). The static wetting behavior was investigated on steel inserts and molded parts and compared to the theoretical values obtained from the Cassie–Baxter and Wenzel models. The experimental results showed correlations between texture design, injection molding replication, and wetting properties. The wetting behavior on the polypropylene parts followed the Cassie–Baxter model, while for PMMA, a composite wetting state of Cassie–Baxter and Wenzel was observed.

Wetting Characteristics of Laser-Ablated Hierarchical Textures Replicated by Micro Injection Molding

Piccolo L.;Lucchetta G.;Masato D.
2023

Abstract

Texturing can be used to functionalize the surface of plastic parts and, in particular, to modify the interaction with fluids. Wetting functionalization can be used for microfluidics, medical devices, scaffolds, and more. In this research, hierarchical textures were generated on steel mold inserts using femtosecond laser ablation to transfer on plastic parts surface via injection molding. Different textures were designed to study the effects of various hierarchical geometries on the wetting behavior. The textures are designed to create wetting functionalization while avoiding high aspect ratio features, which are complex to replicate and difficult to manufacture at scale. Nano-scale ripples were generated over the micro-scale texture by creating laser-induced periodic surface structures. The textured molds were then replicated by micro-injection molding using polypropylene and poly(methyl methacrylate). The static wetting behavior was investigated on steel inserts and molded parts and compared to the theoretical values obtained from the Cassie–Baxter and Wenzel models. The experimental results showed correlations between texture design, injection molding replication, and wetting properties. The wetting behavior on the polypropylene parts followed the Cassie–Baxter model, while for PMMA, a composite wetting state of Cassie–Baxter and Wenzel was observed.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3478975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact