Working within a vineyard in the Pessac Leognan Appellation of Bordeaux, France, this study documents the potential of using simple statistical methods with spatially-resolved and increasingly available electromagnetic induction (EMI) geophysical and normalized difference vegetation index (NDVI) datasets to accurately estimate Bordeaux vineyard soil classes and to quantitatively explore the relationship between vineyard soil types and grapevine vigor. First, co-located electrical tomographic tomography (ERT) and EMI datasets were compared to gain confidence about how the EMI method averaged soil properties over the grapevine rooting depth. Then, EMI data were used with core soil texture and soil-pit based interpretations of Bordeaux soil types (Brunisol, Redoxisol, Colluviosol and Calcosol) to estimate the spatial distribution of geophysically-identified Bordeaux soil classes. A strong relationship (r = 0.75, p < 0.01) was revealed between the geophysically-identified Bordeaux soil classes and NDVI (both 2 m resolution), showing that the highest grapevine vigor was associated with the Bordeaux soil classes having the largest clay fraction. The results suggest that within-block variability of grapevine vigor was largely controlled by variability in soil classes, and that carefully collected EMI and NDVI datasets can be exceedingly helpful for providing quantitative estimates of vineyard soil and vigor variability, as well as their covariation. The method is expected to be transferable to other viticultural regions, providing an approach to use easy-to-acquire, high resolution datasets to guide viticultural practices, including routine management and replanting.

Estimation of soil classes and their relationship to grapevine vigor in a Bordeaux vineyard: advancing the practical joint use of electromagnetic induction (EMI) and NDVI datasets for precision viticulture

Peruzzo, L;
2021

Abstract

Working within a vineyard in the Pessac Leognan Appellation of Bordeaux, France, this study documents the potential of using simple statistical methods with spatially-resolved and increasingly available electromagnetic induction (EMI) geophysical and normalized difference vegetation index (NDVI) datasets to accurately estimate Bordeaux vineyard soil classes and to quantitatively explore the relationship between vineyard soil types and grapevine vigor. First, co-located electrical tomographic tomography (ERT) and EMI datasets were compared to gain confidence about how the EMI method averaged soil properties over the grapevine rooting depth. Then, EMI data were used with core soil texture and soil-pit based interpretations of Bordeaux soil types (Brunisol, Redoxisol, Colluviosol and Calcosol) to estimate the spatial distribution of geophysically-identified Bordeaux soil classes. A strong relationship (r = 0.75, p < 0.01) was revealed between the geophysically-identified Bordeaux soil classes and NDVI (both 2 m resolution), showing that the highest grapevine vigor was associated with the Bordeaux soil classes having the largest clay fraction. The results suggest that within-block variability of grapevine vigor was largely controlled by variability in soil classes, and that carefully collected EMI and NDVI datasets can be exceedingly helpful for providing quantitative estimates of vineyard soil and vigor variability, as well as their covariation. The method is expected to be transferable to other viticultural regions, providing an approach to use easy-to-acquire, high resolution datasets to guide viticultural practices, including routine management and replanting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3478730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact