Large volumes of medical data have been produced for decades. These data include diagnoses, which are often reported as free text, thus encoding medical knowledge that is still largely unexploited. To decode the medical knowledge present within reports, we propose the Semantic Knowledge Extractor Tool (SKET), an unsupervised knowledge extraction system combining a rule-based expert system with pretrained Machine Learning (ML) models. This work demonstrates the viability of unsupervised Natural Language Processing (NLP) techniques to extract critical information from cancer reports, opening opportunities such as data mining for knowledge extraction purposes, precision medicine applications, structured report creation, and multimodal learning.
SKET: an Unsupervised Knowledge Extraction Tool to Empower Digital Pathology Applications
Di Nunzio G. M.;Ferro N.;Giachelle F.;Irrera O.;Marchesin S.;Silvello G.
2023
Abstract
Large volumes of medical data have been produced for decades. These data include diagnoses, which are often reported as free text, thus encoding medical knowledge that is still largely unexploited. To decode the medical knowledge present within reports, we propose the Semantic Knowledge Extractor Tool (SKET), an unsupervised knowledge extraction system combining a rule-based expert system with pretrained Machine Learning (ML) models. This work demonstrates the viability of unsupervised Natural Language Processing (NLP) techniques to extract critical information from cancer reports, opening opportunities such as data mining for knowledge extraction purposes, precision medicine applications, structured report creation, and multimodal learning.File | Dimensione | Formato | |
---|---|---|---|
short10.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.