Aims: We measured myocardial T2 values by a segmental approach in thalassaemia major (TM) patients, comparing such values against T2* values for the detection of myocardial iron overload (MIO), evaluating their potential in detecting subclinical inflammation, and correlating with clinical status. Methods and results: One-hundred and sixty-six patients (102 females, 38.29 ± 11.49years) enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network underwent magnetic resonance imaging for the assessment of hepatic, pancreatic, and cardiac iron overload (T2* technique), of biventricular function (cine images), and of replacement myocardial fibrosis [late gadolinium enhancement (LGE)]. T2 and T2* values were quantified in all 16 myocardial segments, and the global value was the mean of all segments. Global heart T2 values were significantly higher in TM than in a cohort of 80 healthy subjects. T2 and T2* values were significantly correlated. Out of the 25 patients with a decreased global heart T2* value, 11 (44.0%) had reduced T2 values. No patient with a normal T2* value had a decreased T2 value.Eleven (6.6%) patients had a decreased global heart T2 value, 74 (44.6%) a normal global heart T2 value, and 81 (48.8%) an increased global heart T2 value. Biventricular function was comparable amongst the three groups, whilst LGE was significantly more frequent in patients with reduced vs. increased global heart T2 value. Compared with the other two groups, patients with reduced T2 values had significantly higher hepatic and pancreatic iron deposition. Conclusion: In TM, T2 mapping does not offer any advantage in terms of sensitivity for MIO assessment but detects subclinical myocardial inflammation.
Myocardial tissue characterization by segmental T2 mapping in thalassaemia major: detecting inflammation beyond iron
Quaia, Emilio;Pepe, Alessia
2023
Abstract
Aims: We measured myocardial T2 values by a segmental approach in thalassaemia major (TM) patients, comparing such values against T2* values for the detection of myocardial iron overload (MIO), evaluating their potential in detecting subclinical inflammation, and correlating with clinical status. Methods and results: One-hundred and sixty-six patients (102 females, 38.29 ± 11.49years) enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network underwent magnetic resonance imaging for the assessment of hepatic, pancreatic, and cardiac iron overload (T2* technique), of biventricular function (cine images), and of replacement myocardial fibrosis [late gadolinium enhancement (LGE)]. T2 and T2* values were quantified in all 16 myocardial segments, and the global value was the mean of all segments. Global heart T2 values were significantly higher in TM than in a cohort of 80 healthy subjects. T2 and T2* values were significantly correlated. Out of the 25 patients with a decreased global heart T2* value, 11 (44.0%) had reduced T2 values. No patient with a normal T2* value had a decreased T2 value.Eleven (6.6%) patients had a decreased global heart T2 value, 74 (44.6%) a normal global heart T2 value, and 81 (48.8%) an increased global heart T2 value. Biventricular function was comparable amongst the three groups, whilst LGE was significantly more frequent in patients with reduced vs. increased global heart T2 value. Compared with the other two groups, patients with reduced T2 values had significantly higher hepatic and pancreatic iron deposition. Conclusion: In TM, T2 mapping does not offer any advantage in terms of sensitivity for MIO assessment but detects subclinical myocardial inflammation.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.