This paper develops a new approach to small time local attainability of smooth manifolds of any dimension, possibly with boundary and to prove Hölder continuity of the minimum time function. We give explicit pointwise conditions of any order by using higher order hamiltonians which combine derivatives of the controlled vector field and the functions that locally define the target. For the controllability of a point our sufficient conditions extend some classically known results for symmetric or control affine systems, using the Lie algebra instead, but for targets of higher dimension our approach and results are new. We find our sufficient higher order conditions explicit and easy to compute for targets with curvature and general control systems. Some cases of nonsmooth targets are also included. © 2023, The Author(s).
A Hamiltonian Approach to Small Time Local Attainability of Manifolds for Nonlinear Control Systems
Soravia, Pierpaolo
2023
Abstract
This paper develops a new approach to small time local attainability of smooth manifolds of any dimension, possibly with boundary and to prove Hölder continuity of the minimum time function. We give explicit pointwise conditions of any order by using higher order hamiltonians which combine derivatives of the controlled vector field and the functions that locally define the target. For the controllability of a point our sufficient conditions extend some classically known results for symmetric or control affine systems, using the Lie algebra instead, but for targets of higher dimension our approach and results are new. We find our sufficient higher order conditions explicit and easy to compute for targets with curvature and general control systems. Some cases of nonsmooth targets are also included. © 2023, The Author(s).File | Dimensione | Formato | |
---|---|---|---|
s00245-023-09973-5.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
535.02 kB
Formato
Adobe PDF
|
535.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.