Several remote sensing-based methods have been developed to apply site-specific nitrogen (N) fertilization in crops. They consider spatial and temporal variability in the soil-plant-atmosphere continuum to modulate N applications to the actual crop nutrient status and requirements. However, deriving fertilizer N recommendations exclusively from remote proximal and remote sensing data can lead to substantial inaccuracies and new, more complex approaches are needed. Therefore, this study presents an improved approach that integrates crop modelling, proximal sensing and forecasts weather data to manage site-specific N fertilization in winter wheat. This improved approach is based on four successive steps: (1) optimal N supply is estimated through the DSSAT crop model informed with a combination of observed and forecast weather data; (2) actual crop N uptake is estimated using proximal sensing; (3) N prescription maps are created merging crop model and proximal sensing information, conside...
Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat
Gobbo S.
;Morari F.;Sartori L.
2022
Abstract
Several remote sensing-based methods have been developed to apply site-specific nitrogen (N) fertilization in crops. They consider spatial and temporal variability in the soil-plant-atmosphere continuum to modulate N applications to the actual crop nutrient status and requirements. However, deriving fertilizer N recommendations exclusively from remote proximal and remote sensing data can lead to substantial inaccuracies and new, more complex approaches are needed. Therefore, this study presents an improved approach that integrates crop modelling, proximal sensing and forecasts weather data to manage site-specific N fertilization in winter wheat. This improved approach is based on four successive steps: (1) optimal N supply is estimated through the DSSAT crop model informed with a combination of observed and forecast weather data; (2) actual crop N uptake is estimated using proximal sensing; (3) N prescription maps are created merging crop model and proximal sensing information, conside...File | Dimensione | Formato | |
---|---|---|---|
unpaywall-bitstream-2027403387.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.