Geopolymers (GPs) have emerged as promising adsorbents for wastewater treatment due to their superior adsorption stability, tunable porosity, high adsorption capacity, and low-energy production. Despite their great promise, developing GPs with well-controlled hierarchical structures and high porosity remains challenging, and the mechanism underlying the ion adsorption process remains elusive. Here we report a cost-effective and universal approach to fabricate Na or K GPs with sophisticated architectures, high porosity, and arbitrary cation species exchange by means of additive manufacturing and a surfactant. The introduction of sodium lauryl sulfate (SLS) enhanced the porosity of the GP adsorbents, yielding NaGP-lattice-10%SLS adsorbent with a high total porosity of 80.8 vol%. Combining static and dynamic adsorption tests, the effects of morphology, surfactant content, and cation species on Cs+ adsorption performance were systemically investigated. With an initial Cs+ concentration of 900 mg/L, the printed NaGP exhibited a maximum Cs+ adsorption capacity of 80.1 mg/g, outperforming other adsorbents reported so far. The quasi-second-order fit of the NaGP adsorbent showed overall higher R2 values than the quasi-first-order fit, indicating that the adsorption process was dominated by ion exchange. Combined with first-principles calculations, we verified that the content of water in the GP sod cages also affected the ion-exchange process between Na+ and Cs+.
Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs
Colombo, Paolo;
2023
Abstract
Geopolymers (GPs) have emerged as promising adsorbents for wastewater treatment due to their superior adsorption stability, tunable porosity, high adsorption capacity, and low-energy production. Despite their great promise, developing GPs with well-controlled hierarchical structures and high porosity remains challenging, and the mechanism underlying the ion adsorption process remains elusive. Here we report a cost-effective and universal approach to fabricate Na or K GPs with sophisticated architectures, high porosity, and arbitrary cation species exchange by means of additive manufacturing and a surfactant. The introduction of sodium lauryl sulfate (SLS) enhanced the porosity of the GP adsorbents, yielding NaGP-lattice-10%SLS adsorbent with a high total porosity of 80.8 vol%. Combining static and dynamic adsorption tests, the effects of morphology, surfactant content, and cation species on Cs+ adsorption performance were systemically investigated. With an initial Cs+ concentration of 900 mg/L, the printed NaGP exhibited a maximum Cs+ adsorption capacity of 80.1 mg/g, outperforming other adsorbents reported so far. The quasi-second-order fit of the NaGP adsorbent showed overall higher R2 values than the quasi-first-order fit, indicating that the adsorption process was dominated by ion exchange. Combined with first-principles calculations, we verified that the content of water in the GP sod cages also affected the ion-exchange process between Na+ and Cs+.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.