The interactions between diphenylcarbene DPC and the halogen bond donors CF3I and CF3Br were investigated using matrix isolation spectroscopy (IR, UV-vis, and EPR) in combination with QM and QM/MM calculations. Both halogen bond donors CF3X form very strong complexes with the singlet state of DPC, but only weakly interact with triplet DPC. This results in a switching of the spin state of DPC, the singlet complexes becoming more stable than the triplet complexes. CF3I forms a second complex (type II) with DPC that is thermodynamically slightly more stable. Calculations predict that in this second complex the DPC⋯I distance is shorter than the F3C⋯I distance, whereas in the first (type I) complex the DPC⋯I distance is, as expected, longer. CF3Br only forms the type I complex. Upon irradiation I or Br, respectively, are transferred to the DPC carbene center and radical pairs are formed. Finally, on annealing, the formal C-X insertion product of DPC is observed. Thus, halogen bonding is a powerful new principle to control the spin state of reactive carbenes.

Switching the Spin State of Diphenylcarbene via Halogen Bonding

Costa P.;
2016

Abstract

The interactions between diphenylcarbene DPC and the halogen bond donors CF3I and CF3Br were investigated using matrix isolation spectroscopy (IR, UV-vis, and EPR) in combination with QM and QM/MM calculations. Both halogen bond donors CF3X form very strong complexes with the singlet state of DPC, but only weakly interact with triplet DPC. This results in a switching of the spin state of DPC, the singlet complexes becoming more stable than the triplet complexes. CF3I forms a second complex (type II) with DPC that is thermodynamically slightly more stable. Calculations predict that in this second complex the DPC⋯I distance is shorter than the F3C⋯I distance, whereas in the first (type I) complex the DPC⋯I distance is, as expected, longer. CF3Br only forms the type I complex. Upon irradiation I or Br, respectively, are transferred to the DPC carbene center and radical pairs are formed. Finally, on annealing, the formal C-X insertion product of DPC is observed. Thus, halogen bonding is a powerful new principle to control the spin state of reactive carbenes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3476076
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 47
  • OpenAlex ND
social impact