Let $q$ be a prime, $\chi$ be a non-principal Dirichlet character $\bmod\ q$ and $L(s,\chi)$ be the associated Dirichlet $L$-function. Exploiting a fast algorithm to compute the values of $\vert L(1,\chi) \vert$ for every odd prime $q\le 10^7$, we show that $L(1,\chi_\square) > c_{1} \log q$ and $\beta < 1- \frac{c_{2}}{\log q}$, where $c_1=0.0124862668\dotsc$, $c_2=0.0091904477\dotsc$, $\chi_{\square}$ is the quadratic Dirichlet character $\bmod\ q$ and $\beta\in (0,1)$, if exists, is the Landau-Siegel zero of such a set of Dirichlet $L$-functions. As a by-product of the computations here performed, we also obtained some information about the Littlewood and Joshi bounds on $L(1,\chi_\square)$ and on the class number of the imaginary quadratic field ${\mathbb Q}(\sqrt{-q})$.

Numerical estimates on the Landau-Siegel zero and other related quantities

Alessandro Languasco
2023

Abstract

Let $q$ be a prime, $\chi$ be a non-principal Dirichlet character $\bmod\ q$ and $L(s,\chi)$ be the associated Dirichlet $L$-function. Exploiting a fast algorithm to compute the values of $\vert L(1,\chi) \vert$ for every odd prime $q\le 10^7$, we show that $L(1,\chi_\square) > c_{1} \log q$ and $\beta < 1- \frac{c_{2}}{\log q}$, where $c_1=0.0124862668\dotsc$, $c_2=0.0091904477\dotsc$, $\chi_{\square}$ is the quadratic Dirichlet character $\bmod\ q$ and $\beta\in (0,1)$, if exists, is the Landau-Siegel zero of such a set of Dirichlet $L$-functions. As a by-product of the computations here performed, we also obtained some information about the Littlewood and Joshi bounds on $L(1,\chi_\square)$ and on the class number of the imaginary quadratic field ${\mathbb Q}(\sqrt{-q})$.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022314X2300094X-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3475465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact