In the last twenty years, the advances in sequencing capabilities and data analysis have allowed microbiologists to transcend cultivation based techniques, giving rise to the field of metagenomics. Metagenomics nowadays includes a diverse array of techniques that make it possible to gather knowledge regarding many different aspects of microbial life, but there are many grey areas which deserve attention and improvement. This thesis takes a tour into some of these areas, with a main focus on viruses, key players in the global ecology and evolution of every lifeform. Viruses are currently recognized as one of the most important hubs of genetic evolution, as well as active components of biogeochemical cycles. They also pose numerous challenges to scholars, due to their small genomes and their extreme genetic variability, making the knowledge about viruses severely lag behind compared to cellular organisms. Reconstructing their evolution, for instance, presents singular difficulties, as their genomes frequently follow a mosaic evolution model, in which different genes follow different evolutionary trajectories, and may get integrated in the genome or lost with ease. The first work hereby presented deals with this issue in the regards of a peculiar taxon of bacteriophages, the order Crassvirales, revealing the genes that are most representative of the evolution of the taxon as a whole. An environment in which knowledge about viruses is particularly lacking is Anaerobic Digestion. Anaerobic Digestion is a metabolic pathway that converts organic material into simple compounds, mainly carbon dioxide and methane. Its use by humans is and will be growing in importance in the near future as the climate change crisis pushes humanity to abandon fossil fuels and shift to a circular, green economy. This metabolic process is carried out by a complex community of microorganisms, which are well known thanks to whole shotgun sequencing and metagenomic techniques. The viral community which inhabits this environment, on the other hand, has received much less attention by scholars, in spite of the potential impact it has on the microbiome. The second work presented in this thesis deals with the characterization of the viral and prokaryotic community of Anaerobic Digestion under different conditions, and how the relation between temperate viruses and their hosts changes when a much wider database is taken into account. Improving the production of methane via Anaerobic Digestion can be attained by manipulating the microbial community, and viruses are a promising tool to accomplish this. Another aspect of metagenomics that pushes researchers is the annotation of genes. The assignment of functionalities to novel gene or protein sequences is far from being trivial, and many new sequences remain uncharacterized. This problem is conceptually related to the lack of knowledge about viral sequences, as annotation methods mainly rely on databases of previously characterized sequences, loading with bias the outcome. At genome level, metabolic pathways may remain incomplete either because of either the missed gene annotation or the incompleteness of the reconstructed genome. This thesis includes the publication of KEMET, a software which assesses the completeness of metabolic pathways in genomes. Besides providing an understanding of the metabolism of the chosen genomes, KEMET allows for the improvement of the annotation of the genome, as the user is allowed to identify missing genes by means of a Hidden Markov Model search.
Negli ultimi vent’anni, gli avanzamenti nelle tecniche di sequenziamento e analisi dei dati hanno permesso ai microbiologi di trascendere i metodi basati sulla coltivazione, dando origine al campo della metagenomica. La metagenomica al giorno d’oggi include un insieme variegato di tecniche che rendono possibile generare conoscenza riguardo molti aspetti della vita a livelli microscopici, ma ci sono molte zone grigie che meritano attenzione e miglioramento. Questa tesi compie un tour in alcune di queste aree, concentrandosi principalmente sui virus, attori di importanza fondamentale nell’ecologia a livello globale e nell’evoluzione di ogni forma di vita. I virus sono attualmente riconosciuti come uno dei più importanti centri di evoluzione genetica, oltre che come componenti attivi dei cicli biogeochimici. Essi inoltre pongono numerose sfide agli studiosi, a causa dei loro genomi corti e della loro estrema variabilità genetica, che fanno sì che il sapere riguardo ai virus sia rimasto indietro rispetto a quello sugli organismi cellulari. Ricostruire la loro evoluzione, ad esempio, presenta difficoltà singolari, poiché i loro genomi seguono spesso un modello di evoluzione a mosaico, in cui geni differenti seguono traiettorie evolutive differenti, e possono essere integrati nel genoma o essere persi con facilità. Il primo lavoro qui presentato tratta di questo problema nei riguardi di un particolare taxon virale, l’ordine Crassvirales, rivelando quali sono i geni più rappresentativi dell’evoluzione del taxon intero. Un ambiente nel quale la conoscenza riguardo i virus è particolarmente carente è la Digestione Anaerobica. la Digestione Anaerobica è un pathway metabolico che converte materiale organico in composti semplici, principalmente anidride carbonica e metano. Il suo utilizzo da parte degli esseri umani è e rimarrà in crescita nel prossimo futuro in quanto la crisi climatica spingerà l’umanità ad abbandonare i combustibili fossili e ad adottare un’economia green e circolare. Questo processo metabolico è compiuto da una complessa comunità di microorganismi, che sono ben noti grazie al sequenziamento shotgun e a tecniche di metagenomica. La comunità virale che abita questo ambiente, invece, ha ricevuto molta meno attenzione dagli studiosi, a dispetto del potenziale impatto che ha sul microbioma. Il secondo lavoro presentato in questa tesi riguarda la caratterizzazione delle comunità procariotica e virale della Digestione Anaerobica sotto varie condizioni, e come la relazione tra i virus temperati e i loro ospiti cambia quando si prende in considerazione un database molto più ampio. La produzione di metano tramite la Digestione Anaerobica si può migliorare manipolando la comunità microbica, e i virus sono uno strumento promettente per raggiungere questo scopo. Un altro aspetto della metagenomica che spinge i ricercatori è l'annotazione dei geni. L’assegnamento di funzionalità a nuove sequenze geniche o proteiche è tutt’altro che banale, e molte nuove sequenze rimangono non caratterizzate. Questo problema è concettualmente collegato alla mancanza di conoscenze riguardo le sequenze virali, in quanto i metodi di annotazione si affidano principalmente a dei database di sequenze caratterizzate in precedenza, distorcendo i risultati. A livello dei genomi, i pathway metabolici possono rimanere incompleti o a causa di una mancata annotazione dei geni o dell’incompletezza del genoma ricostruito. Questa tesi include la pubblicazione di KEMET, un software che attesta la completezza dei pathway metabolici all’interno dei genomi. Oltre che a fornire una comprensione del metabolismo dei genomi scelti, KEMET consente di migliorare l’annotazione del genoma, in quanto l’utente ha la possibilità di identificare i geni mancanti tramite una ricerca basata su Hidden Markov Model.
The metagenomics revolution and its impact on virology: the case of anaerobic environments / Rossi, Alessandro. - (2023 Mar 21).
The metagenomics revolution and its impact on virology: the case of anaerobic environments
ROSSI, ALESSANDRO
2023
Abstract
In the last twenty years, the advances in sequencing capabilities and data analysis have allowed microbiologists to transcend cultivation based techniques, giving rise to the field of metagenomics. Metagenomics nowadays includes a diverse array of techniques that make it possible to gather knowledge regarding many different aspects of microbial life, but there are many grey areas which deserve attention and improvement. This thesis takes a tour into some of these areas, with a main focus on viruses, key players in the global ecology and evolution of every lifeform. Viruses are currently recognized as one of the most important hubs of genetic evolution, as well as active components of biogeochemical cycles. They also pose numerous challenges to scholars, due to their small genomes and their extreme genetic variability, making the knowledge about viruses severely lag behind compared to cellular organisms. Reconstructing their evolution, for instance, presents singular difficulties, as their genomes frequently follow a mosaic evolution model, in which different genes follow different evolutionary trajectories, and may get integrated in the genome or lost with ease. The first work hereby presented deals with this issue in the regards of a peculiar taxon of bacteriophages, the order Crassvirales, revealing the genes that are most representative of the evolution of the taxon as a whole. An environment in which knowledge about viruses is particularly lacking is Anaerobic Digestion. Anaerobic Digestion is a metabolic pathway that converts organic material into simple compounds, mainly carbon dioxide and methane. Its use by humans is and will be growing in importance in the near future as the climate change crisis pushes humanity to abandon fossil fuels and shift to a circular, green economy. This metabolic process is carried out by a complex community of microorganisms, which are well known thanks to whole shotgun sequencing and metagenomic techniques. The viral community which inhabits this environment, on the other hand, has received much less attention by scholars, in spite of the potential impact it has on the microbiome. The second work presented in this thesis deals with the characterization of the viral and prokaryotic community of Anaerobic Digestion under different conditions, and how the relation between temperate viruses and their hosts changes when a much wider database is taken into account. Improving the production of methane via Anaerobic Digestion can be attained by manipulating the microbial community, and viruses are a promising tool to accomplish this. Another aspect of metagenomics that pushes researchers is the annotation of genes. The assignment of functionalities to novel gene or protein sequences is far from being trivial, and many new sequences remain uncharacterized. This problem is conceptually related to the lack of knowledge about viral sequences, as annotation methods mainly rely on databases of previously characterized sequences, loading with bias the outcome. At genome level, metabolic pathways may remain incomplete either because of either the missed gene annotation or the incompleteness of the reconstructed genome. This thesis includes the publication of KEMET, a software which assesses the completeness of metabolic pathways in genomes. Besides providing an understanding of the metabolism of the chosen genomes, KEMET allows for the improvement of the annotation of the genome, as the user is allowed to identify missing genes by means of a Hidden Markov Model search.File | Dimensione | Formato | |
---|---|---|---|
alessandro_rossi_tesi_completa_a.pdf
accesso aperto
Descrizione: tesi_Alessandro_Rossi
Tipologia:
Tesi di dottorato
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.