In recent years, the incidence and prevalence of type 1 diabetes (T1D) are increasing worldwide. In addition to the economic burden related to T1D, the management and treatment of such a disease require lots of effort from those people who are affected, as their body is no longer able to produce insulin, one of the key hormones in blood glucose (BG) regulation. The lack of endogenous insulin production results in elevated BG levels and, in particular, in hyperglycemia, a condition that can lead to several long-term cardiovascular complications, such as retinopathy and nephropathy. Therefore, people affected by T1D need lifelong therapy, which relies on exogenous insulin administrations. However, daily management of T1D significantly impacts on patient's quality of life, due to the number of tasks required to achieve proper glucose level regulation. As a matter of fact, one of the major obstacles to optimal glycemic control is represented by the estimation of a correct prandial insulin dose, which is injected to counteract the BG excursion following a meal. Indeed, an accurate mealtime insulin dosing in T1D therapy is crucial to avoid postprandial hypo- or hyperglycemic events, caused by an over- or under-dosage respectively. According to the recommended guidelines for T1D management, the mealtime insulin amount should be calculated following an empirical standard formula (SF), which could lead to a suboptimal dosage due to several reasons, including, above all, the inability of accounting for relevant information related to the glucose dynamics and a lack of individualization. Prandial insulin estimation is a highly patient-dependent task which should be specifically tailored to the individuals' mealtime condition, not only by integrating relevant personalized parameters but also by adjusting the dose based on the current BG trend. Such information on BG dynamics and, in particular, its rate of change is provided, in real-time, by continuous glucose monitoring (CGM) sensors, minimally invasive devices that are becoming a key element in T1D therapy. The real-time availability of information on glucose dynamics provided by CGM systems, along with the possibility of leveraging smart insulin delivery devices, which could potentially integrate a novel dosing technique, fostered the development of new approaches to adjust the SF amount according to the glucose information provided by these sensors. However, the derivation of the proposed state-of-art approaches aimed at correcting the SF has mainly been empirical, suggesting that there would be room for improvement should a systematic modelling methodology be adopted. Therefore, the work presented in this thesis aims at proposing effective and personalized mealtime insulin dosing techniques, which take into account both the CGM-derived information and the specific mealtime status of the individual, to optimize such a dosage, by leveraging machine learning and reinforcement learning algorithms.
Negli ultimi anni, l'incidenza e la prevalenza del diabete di tipo 1 (T1D) sono in aumento in tutto il mondo. Oltre all'onere economico legato al T1D, la gestione e il trattamento di questa malattia richiedono un grande impegno da parte delle persone che ne sono affette, poiché il loro organismo non è più in grado di produrre insulina, uno degli ormoni chiave nella regolazione della glicemia (BG). La mancanza di produzione endogena di insulina provoca livelli elevati di glicemia e, in particolare, iperglicemia, una condizione che può portare a diverse complicazioni cardiovascolari a lungo termine, come la retinopatia e la nefropatia. Pertanto, le persone affette da T1D necessitano di una terapia a vita, che si basa sulla somministrazione di insulina esogena. Tuttavia, la gestione quotidiana della T1D ha un impatto significativo sulla qualità di vita del paziente, a causa del numero di compiti richiesti per ottenere una corretta regolazione del livello di glucosio. Infatti, uno dei maggiori ostacoli a un controllo glicemico ottimale è rappresentato dalla stima di una corretta dose di insulina prandiale, che viene iniettata per contrastare l'escursione della glicemia dopo un pasto. Un accurato dosaggio dell'insulina al momento del pasto nella terapia dei T1D è fondamentale per evitare eventi di ipo- o iperglicemia postprandiale, causati rispettivamente da un sovradosaggio o da un sottodosaggio. Secondo le linee guida raccomandate per la gestione del T1D, la quantità di insulina al pasto dovrebbe essere calcolata seguendo una formula standard empirica (SF), che potrebbe portare a un dosaggio subottimale a causa di diverse ragioni, tra cui, soprattutto, l'incapacità di tenere conto delle informazioni rilevanti relative alla dinamica del glucosio e la mancanza di individualizzazione. La stima dell'insulina prandiale è un compito altamente dipendente dal paziente, che deve essere specificamente adattato alle condizioni dell'individuo al momento del pasto, non solo integrando parametri personalizzati, ma anche regolando la dose in base all'andamento attuale della glicemia. Tali informazioni sulla dinamica della glicemia e, in particolare, sulla sua velocità di variazione sono fornite, in tempo reale, dai sensori per il monitoraggio continuo del glucosio (CGM), dispositivi minimamente invasivi che stanno diventando un elemento chiave nella terapia del T1D. La disponibilità in tempo reale di informazioni sulla dinamica del glucosio fornite dai sistemi CGM, insieme alla possibilità di sfruttare dispositivi intelligenti per la somministrazione di insulina, che potrebbero potenzialmente integrare una nuova tecnica di dosaggio, ha favorito lo sviluppo di nuovi approcci per regolare la quantità di SF in base alle informazioni sul glucosio fornite da questi sensori. Tuttavia, la derivazione degli approcci allo stato dell'arte proposti per correggere l'SF è stata principalmente empirica, suggerendo che ci sarebbe un margine di miglioramento se si adottasse una metodologia di modellazione sistematica. Pertanto, il lavoro presentato in questa tesi mira a proporre tecniche di dosaggio dell'insulina durante il pasto, che siano efficaci e personalizzate, e che tengano conto sia delle informazioni derivate dal CGM sia dello stato specifico del pasto dell'individuo, per ottimizzare tale dosaggio, sfruttando algoritmi di apprendimento automatico e di apprendimento per rinforzo.
Machine Learning Based Techniques for the Design of Personalized Insulin Bolus Calculators in Type 1 Diabetes Therapy / Noaro, Giulia. - (2023 Mar 17).
Machine Learning Based Techniques for the Design of Personalized Insulin Bolus Calculators in Type 1 Diabetes Therapy
NOARO, GIULIA
2023
Abstract
In recent years, the incidence and prevalence of type 1 diabetes (T1D) are increasing worldwide. In addition to the economic burden related to T1D, the management and treatment of such a disease require lots of effort from those people who are affected, as their body is no longer able to produce insulin, one of the key hormones in blood glucose (BG) regulation. The lack of endogenous insulin production results in elevated BG levels and, in particular, in hyperglycemia, a condition that can lead to several long-term cardiovascular complications, such as retinopathy and nephropathy. Therefore, people affected by T1D need lifelong therapy, which relies on exogenous insulin administrations. However, daily management of T1D significantly impacts on patient's quality of life, due to the number of tasks required to achieve proper glucose level regulation. As a matter of fact, one of the major obstacles to optimal glycemic control is represented by the estimation of a correct prandial insulin dose, which is injected to counteract the BG excursion following a meal. Indeed, an accurate mealtime insulin dosing in T1D therapy is crucial to avoid postprandial hypo- or hyperglycemic events, caused by an over- or under-dosage respectively. According to the recommended guidelines for T1D management, the mealtime insulin amount should be calculated following an empirical standard formula (SF), which could lead to a suboptimal dosage due to several reasons, including, above all, the inability of accounting for relevant information related to the glucose dynamics and a lack of individualization. Prandial insulin estimation is a highly patient-dependent task which should be specifically tailored to the individuals' mealtime condition, not only by integrating relevant personalized parameters but also by adjusting the dose based on the current BG trend. Such information on BG dynamics and, in particular, its rate of change is provided, in real-time, by continuous glucose monitoring (CGM) sensors, minimally invasive devices that are becoming a key element in T1D therapy. The real-time availability of information on glucose dynamics provided by CGM systems, along with the possibility of leveraging smart insulin delivery devices, which could potentially integrate a novel dosing technique, fostered the development of new approaches to adjust the SF amount according to the glucose information provided by these sensors. However, the derivation of the proposed state-of-art approaches aimed at correcting the SF has mainly been empirical, suggesting that there would be room for improvement should a systematic modelling methodology be adopted. Therefore, the work presented in this thesis aims at proposing effective and personalized mealtime insulin dosing techniques, which take into account both the CGM-derived information and the specific mealtime status of the individual, to optimize such a dosage, by leveraging machine learning and reinforcement learning algorithms.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Noaro_Giulia_Final.pdf
Open Access dal 17/03/2024
Descrizione: Tesi_definitiva_Giulia_Noaro
Tipologia:
Tesi di dottorato
Licenza:
Altro
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.