: Memristive technologies promise to have a large impact on modern electronics, particularly in the areas of reconfigurable computing and AI hardware. Meanwhile, the evolution of memristive materials alongside the technological progress is opening application perspectives also in the biomedical field, particularly for implantable and lab-on-a-chip devices where advanced sensing technologies generate a large amount of data. Memristive devices are emerging as bioelectronic links merging biosensing with computation, acting as physical processors of analogue signals or in the framework of advanced digital computing architectures. We review recent developments on the processing of electrical neural signals, as well as on transduction and processing of chemical biomarkers of neural and endocrine functions. We conclude with a critical perspective on the future applicability of memristive devices as pivotal building blocks in Bio-AI fusion concepts and bionic schemes. This article is protected by copyright. All rights reserved.
Interfacing Biology and Electronics with Memristive Materials
Vassanelli, Stefano
;
2023
Abstract
: Memristive technologies promise to have a large impact on modern electronics, particularly in the areas of reconfigurable computing and AI hardware. Meanwhile, the evolution of memristive materials alongside the technological progress is opening application perspectives also in the biomedical field, particularly for implantable and lab-on-a-chip devices where advanced sensing technologies generate a large amount of data. Memristive devices are emerging as bioelectronic links merging biosensing with computation, acting as physical processors of analogue signals or in the framework of advanced digital computing architectures. We review recent developments on the processing of electrical neural signals, as well as on transduction and processing of chemical biomarkers of neural and endocrine functions. We conclude with a critical perspective on the future applicability of memristive devices as pivotal building blocks in Bio-AI fusion concepts and bionic schemes. This article is protected by copyright. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Advanced Materials - 2023 - Tzouvadaki - Interfacing Biology and Electronics with Memristive Materials.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
4.25 MB
Formato
Adobe PDF
|
4.25 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.