We study singular perturbations of a class of two-scale stochastic control systems with unbounded data. The assumptions are designed to cover some relaxation problems for deep neural networks. We construct e ective Hamiltonian and initial data and prove the convergence of the value function to the solution of a limit (e ective) Cauchy problem for a parabolic equation of HJB type. We use methods of probability, viscosity solutions and homogenization.

Singular perturbations in stochastic optimal control with unbounded data

M. Bardi;H. Kouhkouh
2023

Abstract

We study singular perturbations of a class of two-scale stochastic control systems with unbounded data. The assumptions are designed to cover some relaxation problems for deep neural networks. We construct e ective Hamiltonian and initial data and prove the convergence of the value function to the solution of a limit (e ective) Cauchy problem for a parabolic equation of HJB type. We use methods of probability, viscosity solutions and homogenization.
2023
File in questo prodotto:
File Dimensione Formato  
Bardi_Kouhkouh_sing_pert_arxiv copy.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 357.59 kB
Formato Adobe PDF
357.59 kB Adobe PDF Visualizza/Apri
Bardi_Kouhkouh_cocv220125 copy.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 579.73 kB
Formato Adobe PDF
579.73 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3473427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact