: Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.

Regulation of human endothelial cell migration by oral contraceptive estrogen receptor ligands

Dama A.;Baggio C.;Trevisi L.;Bolego C.;Cignarella A.
2023

Abstract

: Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.
File in questo prodotto:
File Dimensione Formato  
EJP23.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3472322
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact