We derive new integral estimates on substatic manifolds with boundary of horizon type, naturally arising in General Relativity. In particular, we generalize to this setting an identity due to Magnanini-Poggesi [24] leading to the Alexandrov Theorem in Rn and improve on a Heintze-Karcher type inequality due to Li-Xia [22]. Our method relies on the introduction of a new vector field with nonnegative divergence, generalizing to this setting the P-function technique of Weinberger [36].

New integral estimates in substatic Riemannian manifolds and the Alexandrov Theorem

Fogagnolo M.;
2022

Abstract

We derive new integral estimates on substatic manifolds with boundary of horizon type, naturally arising in General Relativity. In particular, we generalize to this setting an identity due to Magnanini-Poggesi [24] leading to the Alexandrov Theorem in Rn and improve on a Heintze-Karcher type inequality due to Li-Xia [22]. Our method relies on the introduction of a new vector field with nonnegative divergence, generalizing to this setting the P-function technique of Weinberger [36].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021782422000605-main.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 458.84 kB
Formato Adobe PDF
458.84 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact