In this work we present a new algorithm that computes cubature formulas with positive weights, interior nodes and fixed algebraic degree of precision, over domains Ω that are arbitrary union of disks. This novel approach first determines the boundary ∂ Ω and then defines a decomposition of Ω by means of nonoverlapping circular segments and polygons, where algebraic positive interior rules can be locally constructed. The resulting global Positive Interior (PI) formula is finally compressed by Caratheodory- Tchakaloff subsampling implemented via NonNegative Least-Squares.

Cubature rules with positive weights on union of disks

Sommariva A.;Vianello M.
2022

Abstract

In this work we present a new algorithm that computes cubature formulas with positive weights, interior nodes and fixed algebraic degree of precision, over domains Ω that are arbitrary union of disks. This novel approach first determines the boundary ∂ Ω and then defines a decomposition of Ω by means of nonoverlapping circular segments and polygons, where algebraic positive interior rules can be locally constructed. The resulting global Positive Interior (PI) formula is finally compressed by Caratheodory- Tchakaloff subsampling implemented via NonNegative Least-Squares.
File in questo prodotto:
File Dimensione Formato  
07_60thDM.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso libero
Dimensione 719.43 kB
Formato Adobe PDF
719.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact