Connectivity is one of the key elements of the 2020s digital society. The evolution of cellular networks, from the first (1G) to the current fifth (5G) generation, has at the same time followed and lead the societal changes, on side supporting the exponential increase in the number of users and the demanding requirements of new applications, and on the other offering exciting possibilities to the development of new technologies and systems. In this thesis, we offer a detailed overview on some of the key enablers of the technological shift from the 4G to the 5G and beyond cellular networks. We go through several aspects of this revolution by considering the simulation tools that played a central role for the research community and showcasing the ones that we developed. Specifically, starting from the physical layer, we review the most popular channel modeling tools that are used to model the new millimeter wave (mmWave) and above-100-GHz frequencies. These frequencies offer large chunks of untapped bandwidth, at the cost of a harsher propagation environment. Thus, being able to accurately model the propagation of the signal is fundamental for the development of new protocols and applications. In this context, moving from our review and the analysis of the computational complexity of the models, we proposed several simplifications approaches to enhance their computational efficiency without compromising their accuracy. Finally, we contributed to the modeling effort with an open-source software to account for the diffraction effect in Ray Tracer (RT) simulations. Then, we showcased a simulation-based framework to optimize the network design. Leveraging the potential of Machine Learning, our framework allows to find the configurations that maximize the network performance, in a fraction of the time that is generally required. Moving up in the protocol stack, we focused our efforts on modeling the traffic generated by a Virtual Reality (VR) Head Mounted Device (HMD) at the application layer, using real data acquired in our laboratory. Furthermore, we analyzed the trade-off between network requirements and perception accuracy when transmitting sensor data in an autonomous driving scenario. Then, we present a synthetic design that contains millions of samples from automotive sensors, and that can be used by both the communication and Computer Vision research communities for this kind of studies. Finally, we developed our own solutions: first, we consider a Network Slicing (NS) scenario for the transmission of VR traffic. Leveraging the previously derived traffic models, we design several scheduling policy to strike the optimal trade-off between latency and resource utilization. Secondly, moving from the considerations of our previous analysis, we review and propose new compression approaches for the efficient broadcasting of Light Detection and Ranging (LiDAR) data over the network.

La connettività è uno degli elementi chiave della società digitale degli ultimi anni. L’evoluzione delle reti cellulari, dalla prima (1G) alla quinta (5G) generazione, ha contemporaneamente risposto a e guidato il cambiamento sociale. Da un lato ha risposto alle esigenze di un numero crescente di utenti e delle nuove applicazioni. Dall’altro ha offerto possibilità uniche per lo sviluppo di nuove tecnologie. Questa tesi offre una panoramica dettagliata su alcuni degli elementi chiave dell’avanzamento tecnologico dal 4G al 5G e oltre, concentrandosi su alcune delle tecniche di simulazione che hanno giocato un ruolo fondamentale in questa rivoluzione e presentando quelle sviluppate nel corso dei tre anni di dottorato. Al livello fisico presentiamo alcuni dei più comuni metodi utilizzati per modellare il canale alle frequenze millimetriche e sopra i 100 GHz. Avere dei modelli simulativi precisi permette alla comunità scientifica di studiare e sviluppare soluzioni per compensare la propagazione più difficoltosa a queste frequenze. Partendo dall’analisi della letteratura e della complessità computazionale dei modelli più popolari, abbiamo sviluppato alcune tecniche per diminuirne il carico computazionale e renderli più utilizzabili dalla comunità scientifica. Sfruttando le potenzialità offerte da Machine Learning, abbiamo quindi sviluppato un sistema per ottimizzare le performance della rete basandosi su parametri microscopici della stessa, come la disposizione delle antenne. Al livello dell’applicazione, abbiamo modellato il traffico generato da un visore per la realtà virtuale, basandoci su misure effettuate in laboratorio. Inoltre, abbiamo analizzato il trade-off tra accuratezza nella percezione dell’ambiente e traffico sulla rete nel contesto di comunicazione tra veicoli a guida autonoma. Per facilitare studi di questo tipo, abbiamo inoltre rilasciato un dataset sintetico contenente dati ottenuti da diversi sensori, che può essere utilizzato nella ricerca in ambito di Computer Vision e di Telecomunicazioni. Infine, abbiamo sviluppato alcune soluzioni innovative. Abbiamo costruito uno scenario di Network Slicing (NS), identificando lo scheduler migliore per trasmettere i frame dal server a un visore per realtà virtuale. Basandoci invece sulle analisi svolte in precedenza, abbiamo revisionato e proposto nuovi metodi di compressione per trasmettere efficacemente dati Light Detection and Ranging (LiDAR) in ambito di comunicazioni tra auto a guida autonoma.

Traffic Modeling and Smart Protocol Design for Future Networks / Testolina, Paolo. - (2023 Feb 17).

Traffic Modeling and Smart Protocol Design for Future Networks

TESTOLINA, PAOLO
2023

Abstract

Connectivity is one of the key elements of the 2020s digital society. The evolution of cellular networks, from the first (1G) to the current fifth (5G) generation, has at the same time followed and lead the societal changes, on side supporting the exponential increase in the number of users and the demanding requirements of new applications, and on the other offering exciting possibilities to the development of new technologies and systems. In this thesis, we offer a detailed overview on some of the key enablers of the technological shift from the 4G to the 5G and beyond cellular networks. We go through several aspects of this revolution by considering the simulation tools that played a central role for the research community and showcasing the ones that we developed. Specifically, starting from the physical layer, we review the most popular channel modeling tools that are used to model the new millimeter wave (mmWave) and above-100-GHz frequencies. These frequencies offer large chunks of untapped bandwidth, at the cost of a harsher propagation environment. Thus, being able to accurately model the propagation of the signal is fundamental for the development of new protocols and applications. In this context, moving from our review and the analysis of the computational complexity of the models, we proposed several simplifications approaches to enhance their computational efficiency without compromising their accuracy. Finally, we contributed to the modeling effort with an open-source software to account for the diffraction effect in Ray Tracer (RT) simulations. Then, we showcased a simulation-based framework to optimize the network design. Leveraging the potential of Machine Learning, our framework allows to find the configurations that maximize the network performance, in a fraction of the time that is generally required. Moving up in the protocol stack, we focused our efforts on modeling the traffic generated by a Virtual Reality (VR) Head Mounted Device (HMD) at the application layer, using real data acquired in our laboratory. Furthermore, we analyzed the trade-off between network requirements and perception accuracy when transmitting sensor data in an autonomous driving scenario. Then, we present a synthetic design that contains millions of samples from automotive sensors, and that can be used by both the communication and Computer Vision research communities for this kind of studies. Finally, we developed our own solutions: first, we consider a Network Slicing (NS) scenario for the transmission of VR traffic. Leveraging the previously derived traffic models, we design several scheduling policy to strike the optimal trade-off between latency and resource utilization. Secondly, moving from the considerations of our previous analysis, we review and propose new compression approaches for the efficient broadcasting of Light Detection and Ranging (LiDAR) data over the network.
Traffic Modeling and Smart Protocol Design for Future Networks
17-feb-2023
La connettività è uno degli elementi chiave della società digitale degli ultimi anni. L’evoluzione delle reti cellulari, dalla prima (1G) alla quinta (5G) generazione, ha contemporaneamente risposto a e guidato il cambiamento sociale. Da un lato ha risposto alle esigenze di un numero crescente di utenti e delle nuove applicazioni. Dall’altro ha offerto possibilità uniche per lo sviluppo di nuove tecnologie. Questa tesi offre una panoramica dettagliata su alcuni degli elementi chiave dell’avanzamento tecnologico dal 4G al 5G e oltre, concentrandosi su alcune delle tecniche di simulazione che hanno giocato un ruolo fondamentale in questa rivoluzione e presentando quelle sviluppate nel corso dei tre anni di dottorato. Al livello fisico presentiamo alcuni dei più comuni metodi utilizzati per modellare il canale alle frequenze millimetriche e sopra i 100 GHz. Avere dei modelli simulativi precisi permette alla comunità scientifica di studiare e sviluppare soluzioni per compensare la propagazione più difficoltosa a queste frequenze. Partendo dall’analisi della letteratura e della complessità computazionale dei modelli più popolari, abbiamo sviluppato alcune tecniche per diminuirne il carico computazionale e renderli più utilizzabili dalla comunità scientifica. Sfruttando le potenzialità offerte da Machine Learning, abbiamo quindi sviluppato un sistema per ottimizzare le performance della rete basandosi su parametri microscopici della stessa, come la disposizione delle antenne. Al livello dell’applicazione, abbiamo modellato il traffico generato da un visore per la realtà virtuale, basandoci su misure effettuate in laboratorio. Inoltre, abbiamo analizzato il trade-off tra accuratezza nella percezione dell’ambiente e traffico sulla rete nel contesto di comunicazione tra veicoli a guida autonoma. Per facilitare studi di questo tipo, abbiamo inoltre rilasciato un dataset sintetico contenente dati ottenuti da diversi sensori, che può essere utilizzato nella ricerca in ambito di Computer Vision e di Telecomunicazioni. Infine, abbiamo sviluppato alcune soluzioni innovative. Abbiamo costruito uno scenario di Network Slicing (NS), identificando lo scheduler migliore per trasmettere i frame dal server a un visore per realtà virtuale. Basandoci invece sulle analisi svolte in precedenza, abbiamo revisionato e proposto nuovi metodi di compressione per trasmettere efficacemente dati Light Detection and Ranging (LiDAR) in ambito di comunicazioni tra auto a guida autonoma.
Traffic Modeling and Smart Protocol Design for Future Networks / Testolina, Paolo. - (2023 Feb 17).
File in questo prodotto:
File Dimensione Formato  
tesi_definitiva_Paolo_Testolina.pdf

accesso aperto

Descrizione: tesi_definitiva_Paolo_Testolina
Tipologia: Tesi di dottorato
Licenza: Altro
Dimensione 19.93 MB
Formato Adobe PDF
19.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact