We report the design of dysprosium directed metallo-supramolecular architectures on a pristine Cu(111) surface. By an appropriate selection of the ditopic molecular linkers equipped with terminal carboxylic groups (TPA, PDA and TDA species), we create reticular and mononuclear metal-organic nanomeshes of tunable internodal distance, which are stabilized by eight-fold Dy⋯O interactions. A thermal annealing treatment for the reticular Dy:TDA architecture gives rise to an unprecedented quasi-hexagonal nanostructure based on dinuclear Dy clusters, exhibiting a unique six-fold Dy⋯O bonding motif. All metallo-supramolecular architectures are stable at room temperature. Our results open new avenues for the engineering of supramolecular architectures on surfaces incorporating f-block elements forming thermally robust nanoarchitectures through ionic bonds.
Dysprosium-carboxylate nanomeshes with tunable cavity size and assembly motif through ionic interactions
Dordevic L.;
2016
Abstract
We report the design of dysprosium directed metallo-supramolecular architectures on a pristine Cu(111) surface. By an appropriate selection of the ditopic molecular linkers equipped with terminal carboxylic groups (TPA, PDA and TDA species), we create reticular and mononuclear metal-organic nanomeshes of tunable internodal distance, which are stabilized by eight-fold Dy⋯O interactions. A thermal annealing treatment for the reticular Dy:TDA architecture gives rise to an unprecedented quasi-hexagonal nanostructure based on dinuclear Dy clusters, exhibiting a unique six-fold Dy⋯O bonding motif. All metallo-supramolecular architectures are stable at room temperature. Our results open new avenues for the engineering of supramolecular architectures on surfaces incorporating f-block elements forming thermally robust nanoarchitectures through ionic bonds.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.