We study the current response to periodic driving of a crucial biochemical reaction network, namely, substrate inhibition. We focus on the conversion rate of substrate into product under time-varying metabolic conditions, modeled by a periodic modulation of the product concentration. We find that the system exhibits a strong nonlinear response to small driving frequencies both for the mean time-averaged current and for the fluctuations. For the first, we obtain an analytic formula by coarse-graining the original model to a solvable one. The result is nonperturbative in the modulation amplitude and frequency. We then refine the picture by studying the stochastic dynamics of the full system using a large deviation approach that allows us to show the resonant effect at the level of the time-averaged variance and signal-to-noise ratio. Finally, we discuss how this nonequilibrium effect may play a role in metabolic and synthetic networks.

Strong current response to slow modulation: A metabolic case-study

Forastiere D.;Falasco G.;
2020

Abstract

We study the current response to periodic driving of a crucial biochemical reaction network, namely, substrate inhibition. We focus on the conversion rate of substrate into product under time-varying metabolic conditions, modeled by a periodic modulation of the product concentration. We find that the system exhibits a strong nonlinear response to small driving frequencies both for the mean time-averaged current and for the fluctuations. For the first, we obtain an analytic formula by coarse-graining the original model to a solvable one. The result is nonperturbative in the modulation amplitude and frequency. We then refine the picture by studying the stochastic dynamics of the full system using a large deviation approach that allows us to show the resonant effect at the level of the time-averaged variance and signal-to-noise ratio. Finally, we discuss how this nonequilibrium effect may play a role in metabolic and synthetic networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact