In the recent years it has been generally accepted that seismic parameters add an important observational constraint for the study of stellar populations and galaxy evolution. Padova-Trieste (PARSEC) evolutionary tracks are widely used to characterise stellar objects and stellar populations. Stellar models at the base of these studies suffer from uncertainties and, more important, degeneracy among different input parameters: stellar mass, chemical composition, central chemical mixing, age, etc. Adding seismic properties to the classic parameters for stars at different evolutionary states, from the H main-sequence to the asymptotic giant branch, is a powerful tool to calibrate physical processes in stellar models, and hence to improve our interpretation of Galactic and extra-Galactic observations....
PARSEC evolutionary tracks and isochrones including seismic properties
Bressan, A.;Girardi, L.;Bossini, D.;Miglio, A.;Trabucchi, M.;Marigo, P.
2018
Abstract
In the recent years it has been generally accepted that seismic parameters add an important observational constraint for the study of stellar populations and galaxy evolution. Padova-Trieste (PARSEC) evolutionary tracks are widely used to characterise stellar objects and stellar populations. Stellar models at the base of these studies suffer from uncertainties and, more important, degeneracy among different input parameters: stellar mass, chemical composition, central chemical mixing, age, etc. Adding seismic properties to the classic parameters for stars at different evolutionary states, from the H main-sequence to the asymptotic giant branch, is a powerful tool to calibrate physical processes in stellar models, and hence to improve our interpretation of Galactic and extra-Galactic observations....Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.