Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll -binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investi-gation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a- fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.

Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages

Agostini, Alessandro
Conceptualization
;
Carbonera, Donatella
Supervision
;
2023

Abstract

Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll -binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investi-gation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a- fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.
File in questo prodotto:
File Dimensione Formato  
agostini.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468290
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact