The IceCube Neutrino Observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged detector, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide improved prospects for detecting fainter sources. IceCube-Gen2 is planned to have an extended in-ice optical array, a radio array at shallower depths for detecting ultra-high-energy (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ∼ 120 new detection strings to the existing 86 in IceCube over ∼ 7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment.

Simulation and sensitivities for a phased IceCube-Gen2 deployment

Bernardini E.;Mancina S.;
2022

Abstract

The IceCube Neutrino Observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged detector, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide improved prospects for detecting fainter sources. IceCube-Gen2 is planned to have an extended in-ice optical array, a radio array at shallower depths for detecting ultra-high-energy (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ∼ 120 new detection strings to the existing 86 in IceCube over ∼ 7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment.
2022
Proceedings of Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact