As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of “model problems” depending on a parameter n (Formula presented) [0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.
A REAL ANALYTICITY RESULT FOR SYMMETRIC FUNCTIONS OF THE EIGENVALUES OF A QUASIPERIODIC SPECTRAL PROBLEM FOR THE DIRICHLET LAPLACIAN
Lanza de Cristoforis M.
Writing – Original Draft Preparation
;Musolino P.Writing – Original Draft Preparation
;
2021
Abstract
As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of “model problems” depending on a parameter n (Formula presented) [0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
20210214_LaMuTa_jotart.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Accesso libero
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
2021-086-002-009.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.