As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of "model problems" depending on a parameter eta is an element of[0, 2 pi](2) for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.

A REAL ANALYTICITY RESULT FOR SYMMETRIC FUNCTIONS OF THE EIGENVALUES OF A QUASIPERIODIC SPECTRAL PROBLEM FOR THE DIRICHLET LAPLACIAN

Lanza de Cristoforis M.
Writing – Original Draft Preparation
;
Musolino P.
Writing – Original Draft Preparation
;
2021

Abstract

As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of "model problems" depending on a parameter eta is an element of[0, 2 pi](2) for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3467949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact