Let G be a finite insoluble group with soluble radical R(G). In this paper we investigate the soluble graph of G, which is a natural generalisation of the widely studied commuting graph. Here the vertices are the elements in G∖R(G), with x adjacent to y if they generate a soluble subgroup of G. Our main result states that this graph is always connected and its diameter, denoted δS(G), is at most 5. More precisely, we show that δS(G)⩽3 if G is not almost simple and we obtain stronger bounds for various families of almost simple groups. For example, we will show that δS(Sn)=3 for all n⩾6. We also establish the existence of simple groups with δS(G)⩾4. For instance, we prove that δS(A2p+1)⩾4 for every Sophie Germain prime p⩾5, which demonstrates that our general upper bound of 5 is close to best possible. We conclude by briefly discussing some variations of the soluble graph construction and we present several open problems.

On the soluble graph of a finite group

Burness T. C.;Lucchini A.;Nemmi D.
2023

Abstract

Let G be a finite insoluble group with soluble radical R(G). In this paper we investigate the soluble graph of G, which is a natural generalisation of the widely studied commuting graph. Here the vertices are the elements in G∖R(G), with x adjacent to y if they generate a soluble subgroup of G. Our main result states that this graph is always connected and its diameter, denoted δS(G), is at most 5. More precisely, we show that δS(G)⩽3 if G is not almost simple and we obtain stronger bounds for various families of almost simple groups. For example, we will show that δS(Sn)=3 for all n⩾6. We also establish the existence of simple groups with δS(G)⩾4. For instance, we prove that δS(A2p+1)⩾4 for every Sophie Germain prime p⩾5, which demonstrates that our general upper bound of 5 is close to best possible. We conclude by briefly discussing some variations of the soluble graph construction and we present several open problems.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0097316522001169-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 709.79 kB
Formato Adobe PDF
709.79 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3467933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact