We provide an abstract framework for submodular mean field games and identify verifiable sufficient conditions that allow us to prove the existence and approximation of strong mean field equilibria in models where data may not be continuous with respect to the measure parameter and common noise is allowed. The setting is general enough to encompass qualitatively different problems, such as mean field games for discrete time finite space Markov chains, singularly controlled and reflected diffusions, and mean field games of optimal timing. Our analysis hinges on Tarski’s fixed point theorem, along with technical results on lattices of flows of probability and subprobability measures.
A Unifying Framework for Submodular Mean Field Games
Dianetti, Jodi
;Ferrari, Giorgio;Fischer, Markus;
2023
Abstract
We provide an abstract framework for submodular mean field games and identify verifiable sufficient conditions that allow us to prove the existence and approximation of strong mean field equilibria in models where data may not be continuous with respect to the measure parameter and common noise is allowed. The setting is general enough to encompass qualitatively different problems, such as mean field games for discrete time finite space Markov chains, singularly controlled and reflected diffusions, and mean field games of optimal timing. Our analysis hinges on Tarski’s fixed point theorem, along with technical results on lattices of flows of probability and subprobability measures.File | Dimensione | Formato | |
---|---|---|---|
Dianetti - Ferrari - Fischer - Nendel MOOR.2022.1316.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
926.46 kB
Formato
Adobe PDF
|
926.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.