We consider the volume constrained fractional mean curvature flow of a nearly spherical set and prove long time existence and asymptotic convergence to a ball. The result applies in particular to convex initial data under the assumption of global existence. Similarly, we show exponential convergence to a constant for the fractional mean curvature flow of a periodic graph.
Stability of the ball under volume preserving fractional mean curvature flow
Cesaroni A.;
2024
Abstract
We consider the volume constrained fractional mean curvature flow of a nearly spherical set and prove long time existence and asymptotic convergence to a ball. The result applies in particular to convex initial data under the assumption of global existence. Similarly, we show exponential convergence to a constant for the fractional mean curvature flow of a periodic graph.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cnACV24.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
713.96 kB
Formato
Adobe PDF
|
713.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Submitted_StabilityOfTheBall.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Accesso libero
Dimensione
301.52 kB
Formato
Adobe PDF
|
301.52 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.