Sub-micron plastics (SMPs, size < 1 µm) are potentially taken up by plants. Serious concerns arise that how far SMPs can transfer from plants into food webs. Here, we show that lettuce takes up 250 nm gadolinium labelled polystyrene (PS) and polyvinyl chloride (PVC) SMPs from the soil. The polymer type influences the biodistribution of the particles in lettuce (roots and leaves) and the number of particles transferred from the plants to insects feeding on the treated lettuce. The SMPs were further transferred from insects to insect-feeding fish to accumulate mostly in the fish liver. No Gd was released from the particles upon biotransformation (formation of protein corona on the particles) in the plants or insects. However, Gd ion was detected in fish fed with PS-SMP treated insects, indicating the possible degradation of the particles. No biomagnification in fish was detected for either type of SMPs. We conclude that plastic particles can potentially transfer from soil into food webs ...

Quantifying the trophic transfer of sub-micron plastics in an assembled food chain

Abdolahpur Monikh F.
;
2022

Abstract

Sub-micron plastics (SMPs, size < 1 µm) are potentially taken up by plants. Serious concerns arise that how far SMPs can transfer from plants into food webs. Here, we show that lettuce takes up 250 nm gadolinium labelled polystyrene (PS) and polyvinyl chloride (PVC) SMPs from the soil. The polymer type influences the biodistribution of the particles in lettuce (roots and leaves) and the number of particles transferred from the plants to insects feeding on the treated lettuce. The SMPs were further transferred from insects to insect-feeding fish to accumulate mostly in the fish liver. No Gd was released from the particles upon biotransformation (formation of protein corona on the particles) in the plants or insects. However, Gd ion was detected in fish fed with PS-SMP treated insects, indicating the possible degradation of the particles. No biomagnification in fish was detected for either type of SMPs. We conclude that plastic particles can potentially transfer from soil into food webs ...
2022
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-640275279.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 7.72 MB
Formato Adobe PDF
7.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3467234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact