Context. With high-precision radial velocity surveys reaching a sufficiently long time baseline, the domain of long-period planet detections has recently opened up. The search for Jupiter-like planets is especially important if we wish to investigate the prevalence of solar system analogs, but their detection is complicated by the existence of stellar activity cycles on similar timescales. Radial velocity data with sufficiently long-term instrumental precision and robust methods of diagnosing activity are crucial to the detection of extrasolar Jupiters. Aims. Through our HARPS survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Methods. We carry out a Markov chain Monte Carlo (MCMC) analysis of the radial velocity data. To examine the signal's origin, we employ a variety of statistical tests using activity diagnostics such as the Ca II H and K lines and line asymmetry tracers. Results. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of radial velocity and activity index data. Conclusions. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

The Solar Twin Planet Search: II. A Jupiter twin around a solar twin

Spina L.;
2015

Abstract

Context. With high-precision radial velocity surveys reaching a sufficiently long time baseline, the domain of long-period planet detections has recently opened up. The search for Jupiter-like planets is especially important if we wish to investigate the prevalence of solar system analogs, but their detection is complicated by the existence of stellar activity cycles on similar timescales. Radial velocity data with sufficiently long-term instrumental precision and robust methods of diagnosing activity are crucial to the detection of extrasolar Jupiters. Aims. Through our HARPS survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Methods. We carry out a Markov chain Monte Carlo (MCMC) analysis of the radial velocity data. To examine the signal's origin, we employ a variety of statistical tests using activity diagnostics such as the Ca II H and K lines and line asymmetry tracers. Results. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of radial velocity and activity index data. Conclusions. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3466887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact