This study analyses, for the first time, the use of reflective surfaces based on magnetized plasmas for polarization conversion. The feasibility of this concept has been assessed via a theoretical model. Moreover, the numerical design of a plasma-based reflective surface is presented. The latter enables linear-to-linear (LP-to-LP) and linear-to-circular polarization (LP-to-CP) conversion over a broad frequency range, from 7.5 to 13 GHz. To this end, the applied magnetic field intensity has to be tunable over 55–140 mT and its direction steerable toward three mutual orthogonal axes. At the same time, the plasma density has to be controlled up to 2 × 10^18 m^(−3). These requirements are consistent with the plasma technology at the state-of-the-art.

Plasma-Based Reflective Surface for Polarization Conversion

Mirko Magarotto
;
Luca Schenato;Paola De Carlo;Antonio-Daniele Capobianco
2023

Abstract

This study analyses, for the first time, the use of reflective surfaces based on magnetized plasmas for polarization conversion. The feasibility of this concept has been assessed via a theoretical model. Moreover, the numerical design of a plasma-based reflective surface is presented. The latter enables linear-to-linear (LP-to-LP) and linear-to-circular polarization (LP-to-CP) conversion over a broad frequency range, from 7.5 to 13 GHz. To this end, the applied magnetic field intensity has to be tunable over 55–140 mT and its direction steerable toward three mutual orthogonal axes. At the same time, the plasma density has to be controlled up to 2 × 10^18 m^(−3). These requirements are consistent with the plasma technology at the state-of-the-art.
File in questo prodotto:
File Dimensione Formato  
10028727.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3466830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact