Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Very-High Energy (VHE) gamma-ray astroparticle physics is a relatively young field, and observations
over the past decade have surprisingly revealed almost two hundred VHE emitters which
appear to act as cosmic particle accelerators. These sources are an important component of the
Universe, influencing the evolution of stars and galaxies. At the same time, they also act as a
probe of physics in the most extreme environments known - such as in supernova explosions, and
around or after the merging of black holes and neutron stars. However, the existing experiments
have provided exciting glimpses, but often falling short of supplying the full answer. A deeper
understanding of the TeV sky requires a significant improvement in sensitivity at TeV energies,
a wider energy coverage from tens of GeV to hundreds of TeV and a much better angular and
energy resolution with respect to the currently running facilities. The next generation gamma-ray
observatory, the Cherenkov Telescope Array Observatory (CTAO), is the answer to this need.
In this talk I will present this upcoming observatory from its design to the construction, and its
potential science exploitation. CTAO will allow the entire astronomical community to explore a
new discovery space that will likely lead to paradigm-changing breakthroughs. In particular, CTA
has an unprecedented sensitivity to short (sub-minute) timescale phenomena, placing it as a key
instrument in the future of multi-messenger and multi-wavelength time domain astronomy. I will
conclude the talk presenting the first scientific results obtained by the LST-1, the prototype of one
CTA telescope type - the Large Sized Telescope, that is currently under commission.
CTA – the World’s largest ground-based gamma-ray observatory
Very-High Energy (VHE) gamma-ray astroparticle physics is a relatively young field, and observations
over the past decade have surprisingly revealed almost two hundred VHE emitters which
appear to act as cosmic particle accelerators. These sources are an important component of the
Universe, influencing the evolution of stars and galaxies. At the same time, they also act as a
probe of physics in the most extreme environments known - such as in supernova explosions, and
around or after the merging of black holes and neutron stars. However, the existing experiments
have provided exciting glimpses, but often falling short of supplying the full answer. A deeper
understanding of the TeV sky requires a significant improvement in sensitivity at TeV energies,
a wider energy coverage from tens of GeV to hundreds of TeV and a much better angular and
energy resolution with respect to the currently running facilities. The next generation gamma-ray
observatory, the Cherenkov Telescope Array Observatory (CTAO), is the answer to this need.
In this talk I will present this upcoming observatory from its design to the construction, and its
potential science exploitation. CTAO will allow the entire astronomical community to explore a
new discovery space that will likely lead to paradigm-changing breakthroughs. In particular, CTA
has an unprecedented sensitivity to short (sub-minute) timescale phenomena, placing it as a key
instrument in the future of multi-messenger and multi-wavelength time domain astronomy. I will
conclude the talk presenting the first scientific results obtained by the LST-1, the prototype of one
CTA telescope type - the Large Sized Telescope, that is currently under commission.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3466545
Citazioni
ND
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.