In this paper we describe the participation of the WordUp! team in the VaxxStance shared task at IberLEF 2021. The goal of the competition is to determine the author's stance from tweets written both in Spanish and Basque on the topic of the Antivaxxers movement. Our approach, in the four different tracks proposed, combines the Logistic Regression classifier with diverse groups of features: stylistic, tweet-based, user-based, lexicon-based, dependency-based, and network-based. The outcomes of our experiments are in line with state-of-the-art results on other languages, proving the efficacy of combining methods derived from NLP and Network Science for detecting stance in Spanish and Basque.

WordUp! at VaxxStance 2021: Combining Contextual Information with Textual and Dependency-Based Syntactic Features for Stance Detection

Livio Finos;Andrea Sciandra
2021

Abstract

In this paper we describe the participation of the WordUp! team in the VaxxStance shared task at IberLEF 2021. The goal of the competition is to determine the author's stance from tweets written both in Spanish and Basque on the topic of the Antivaxxers movement. Our approach, in the four different tracks proposed, combines the Logistic Regression classifier with diverse groups of features: stylistic, tweet-based, user-based, lexicon-based, dependency-based, and network-based. The outcomes of our experiments are in line with state-of-the-art results on other languages, proving the efficacy of combining methods derived from NLP and Network Science for detecting stance in Spanish and Basque.
2021
Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021)
XXXVII International Conference of the Spanish Society for Natural Language Processing.
File in questo prodotto:
File Dimensione Formato  
vaxx_paper3.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 828.41 kB
Formato Adobe PDF
828.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3466134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact