The preparation of a DNA rotaxane consisting of a circular nucleic acid interlocked, through hybridization, on a nucleic acid axle and stoppered by two 10-nm-sized Au nanoparticles (NPs) is described. By the tethering of 5-nm- or 15-nm-sized Au NPs on the ring, the supramolecular structure of the rotaxane is confirmed. Using nucleic acids as "fuels" and "anti-fuels", the cyclic and reversible transition of the rotaxane ring across two states is demonstrated. By the functionalization of the ring with fluorophore-modified nucleic acids in different orientations, the transitions of the rings between the sites are followed by fluorescence quenching or surface-enhanced fluorescence. The experimental results are supported by theoretical modeling. © 2013 American Chemical Society.
Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties
Cecconello A.;
2013
Abstract
The preparation of a DNA rotaxane consisting of a circular nucleic acid interlocked, through hybridization, on a nucleic acid axle and stoppered by two 10-nm-sized Au nanoparticles (NPs) is described. By the tethering of 5-nm- or 15-nm-sized Au NPs on the ring, the supramolecular structure of the rotaxane is confirmed. Using nucleic acids as "fuels" and "anti-fuels", the cyclic and reversible transition of the rotaxane ring across two states is demonstrated. By the functionalization of the ring with fluorophore-modified nucleic acids in different orientations, the transitions of the rings between the sites are followed by fluorescence quenching or surface-enhanced fluorescence. The experimental results are supported by theoretical modeling. © 2013 American Chemical Society.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.