To perform landslide susceptibility prediction (LSP), it is important to select appropriate mapping unit and landslide-related conditioning factors. The efficient and automatic multi-scale segmentation (MSS) method proposed by the authors promotes the application of slope units. However, LSP modeling based on these slope units has not been performed. Moreover, the heterogeneity of conditioning factors in slope units is neglected, leading to incomplete input variables of LSP modeling. In this study, the slope units extracted by the MSS method are used to construct LSP modeling, and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean, standard deviation and range. Thus, slope units-based machine learning models considering internal variations of conditioning factors (variant slope-machine learning) are proposed. The Chongyi County is selected as the case study and is divided into 53,055 slope units. Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations. Random forest (RF) and multi-layer perceptron (MLP) machine learning models are used to construct variant Slope-RF and Slope-MLP models. Meanwhile, the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors, and conventional grid units-based machine learning (Grid-RF and MLP) models are built for comparisons through the LSP performance assessments. Results show that the variant Slope-machine learning models have higher LSP performances than Slope-machine learning models; LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models. It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling, and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides. The research results have important reference significance for land use and landslide prevention.

Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors

Filippo Catani;Sansar Raj Meena;
2022

Abstract

To perform landslide susceptibility prediction (LSP), it is important to select appropriate mapping unit and landslide-related conditioning factors. The efficient and automatic multi-scale segmentation (MSS) method proposed by the authors promotes the application of slope units. However, LSP modeling based on these slope units has not been performed. Moreover, the heterogeneity of conditioning factors in slope units is neglected, leading to incomplete input variables of LSP modeling. In this study, the slope units extracted by the MSS method are used to construct LSP modeling, and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean, standard deviation and range. Thus, slope units-based machine learning models considering internal variations of conditioning factors (variant slope-machine learning) are proposed. The Chongyi County is selected as the case study and is divided into 53,055 slope units. Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations. Random forest (RF) and multi-layer perceptron (MLP) machine learning models are used to construct variant Slope-RF and Slope-MLP models. Meanwhile, the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors, and conventional grid units-based machine learning (Grid-RF and MLP) models are built for comparisons through the LSP performance assessments. Results show that the variant Slope-machine learning models have higher LSP performances than Slope-machine learning models; LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models. It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling, and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides. The research results have important reference significance for land use and landslide prevention.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1674775522001615-main (4).pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 10.78 MB
Formato Adobe PDF
10.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3464269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 93
  • OpenAlex ND
social impact